Skip to main content
Log in

Na+, K+-ATPase β1 subunit associates with α1 subunit modulating a “higher-NKA-in-hyposmotic media” response in gills of euryhaline milkfish, Chanos chanos

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The euryhaline milkfish (Chanos chanos) is a popular aquaculture species that can be cultured in fresh water, brackish water, or seawater in Southeast Asia. In gills of the milkfish, Na+, K+-ATPase (i.e., NKA; sodium pump) responds to salinity challenges including changes in mRNA abundance, protein amount, and activity. The functional pump is composed of a heterodimeric protein complex composed of α- and β-subunits. Among the NKA genes, α1–β1 isozyme comprises the major form of NKA subunits in mammalian osmoregulatory organs; however, most studies on fish gills have focused on the α1 subunit and did not verify the α1–β1 isozyme. Based on the sequenced milkfish transcriptome, an NKA β1 subunit gene was identified that had the highest amino acid homology to β233, a NKA β1 subunit paralog originally identified in the eel. Despite this high level of homology to β233, phylogenetic analysis and the fact that only a single NKA β1 subunit gene exists in the milkfish suggest that the milkfish gene should be referred to as the NKA β1 subunit gene. The results of accurate domain prediction of the β1 subunit, co-localization of α1 and β1 subunits in epithelial ionocytes, and co-immunoprecipitation of α1 and β1 subunits, indicated the formation of a α1–β1 complex in milkfish gills. Moreover, when transferred to hyposmotic media (fresh water) from seawater, parallel increases in branchial mRNA and protein expression of NKA α1 and β1 subunits suggested their roles in hypo-osmoregulation of euryhaline milkfish. This study molecularly characterized the NKA β1 subunit and provided the first evidence for an NKA α1–β1 association in gill ionocytes of euryhaline teleosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armesto P, Infante C, Cousin X, Ponce M, Manchado M (2015) Molecular and functional characterization of seven Na+/K+-ATPase β subunit paralogs in Senegalese sole (Solea senegalensis Kaup, 1858). Comp Biochem Physiol B Biochem Mol Biol 182:14–26

    Article  CAS  PubMed  Google Scholar 

  • Bagrinao T (1994) Systematics, distribution, genetics and life history of milkfish (Chanos chanos). Environ Biol Fish 39:23–41

    Article  Google Scholar 

  • Barwe SP, Kim S, Rajasekaran SA, Bowie JU, Rajasekaran AK (2007) Janus model of the Na, K-ATPase beta-subunit transmembrane domain: distinct faces mediate alpha/beta assembly and beta-beta homo-oligomerization. J Mol Biol 365:706–714

    Article  CAS  PubMed  Google Scholar 

  • Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol Renal Physiol 275:F633–F650

    CAS  Google Scholar 

  • Bystriansky JS, Schulte PM (2011) Changes in gill H+-ATPase and Na+/K+-ATPase expression and activity during freshwater acclimation of Atlantic salmon (Salmo salar). J Exp Biol 214:2435–2442

    Article  CAS  PubMed  Google Scholar 

  • Bystriansky JS, Richards JG, Schulte PM, Ballantyne JS (2006) Reciprocal expression of gill Na+/K+–ATPase α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J Exp Biol 209:1848–1858

    Article  CAS  PubMed  Google Scholar 

  • Cameron R, Klein L, Shyjan AW, Rakic P, Levenson R (1994) Neurons and astroglia express distinct subsets of Na, K-ATPase α and β subunits. Mol. Brain Res 21:333–343

    Article  CAS  Google Scholar 

  • Chang IC, Lee TH, Yang CH, Wei YY, Chou FI, Hwang PP (2001) Morphology and function of gill mitochondria-rich cells in fish acclimated to different environments. Physiol Biochem Zool 74:111–119

    Article  CAS  PubMed  Google Scholar 

  • Chew SF, Hiong KC, Lam SP, Ong SW, Wee WL, Wong WP, Ip YK (2014) Functional roles of Na+/K+-ATPase in active ammonia excretion and seawater acclimation in the giant mudskipper, Periophthalmodon schlosseri. Front Physiol 5:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Ching B, Woo JM, Hiong KC, Boo MV, Choo CY, Wong WP, Chew SF, Ip YK (2015) Na+/K+-Atpase alpha-subunit (nka alpha) isoforms and their mRNA expression levels, overall nka alpha protein abundance, and kinetic properties of NKA in the skeletal muscle and three electric organs of the electric eel, Electrophorus electricus. PLoS One 10:e0118352

    Article  PubMed  PubMed Central  Google Scholar 

  • Chow DC, Forte JG (1995) Functional significance of the beta-subunit for heterodimeric P-type ATPases. J Exp Biol 198:1–17

    CAS  PubMed  Google Scholar 

  • Crane RK (1985) Comments and experiments on the kinetics of Na+ gradient-coupled glucose transport as found in rabbit jejunal brush-border membrane vesicles. Ann N Y Acad Sci 456:36–46

    Article  CAS  PubMed  Google Scholar 

  • Crear D (1980) Observations on the reproductive state of milkfish populations (Chanos chanos) from hypersaline ponds on Christmas Island (Pacific Ocean). Proc World Maricul Soc 11:548–566

    Article  Google Scholar 

  • Cutler CP, Sanders IL, Hazon N, Cramb G (1995) Primary sequence, tissue specificity and expression of the Na1,K1-ATPase a 1 subunit in the European eel (Anguilla anguilla). Comp Biochem Physiol B 111:567–573

    Article  CAS  PubMed  Google Scholar 

  • Cutler CP, Brezillon S, Bekir S, Sanders IL, Hazon N, Cramb G (2000) Expression of a duplicate Na, K-ATPase β1-isoform in the European eel (Anguilla anguilla). Am J Physiol Regul Integr Comp Physiol 279:R222–R229

    CAS  PubMed  Google Scholar 

  • Espineda CE, Chang JH, Twiss J, Rajasekaran SA, Rajasekaran AK (2004) Repression of Na, K-ATPase beta1-subunit by the transcription factor snail in carcinoma. Mol Biol Cell 15:1364–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans DH, Piermarini PM, Potts WTW (1999) Ionic transport in the fish gill epithelium. J Exp Zool 283:641–652

    Article  CAS  Google Scholar 

  • Geering K (1990) Subunit assembly and functional maturation of Na, K-ATPase. J Membr Biol 115:109–121

    Article  CAS  PubMed  Google Scholar 

  • Geering K (2001) The functional role of beta subunits in oligomeric P-type ATPases. J Bioenerg Biomembr 33:425–438

    Article  CAS  PubMed  Google Scholar 

  • Geering K, Jaunin P, Jaisser F, Mérillat AM, Horisberger JD, Mathews PM, Lemas V, Fambrough DM, Rossier BC (1993) Mutation of a conserved proline residue in the beta-subunit ectodomain prevents Na(+)-K(+)-ATPase oligomerization. Am J Physiol 265:C1169–C1174

    CAS  PubMed  Google Scholar 

  • Giffard-Mena I, Lorin-Nebel C, Charmantier G, Castille R, Boulo V (2008) Adaptation of the sea-bass (Dicentrarchus labrax) to fresh water: Role of aquaporins and Na+/K+-ATPases. Comp Biochem Physiol A Mol Integr Physiol 150:332–338

    Article  PubMed  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann EK, Simonsen LO (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69:315–382

    CAS  PubMed  Google Scholar 

  • Hu YC, Kang CK, Tang CH, Lee TH (2015) Transcriptomic analysis of metabolic pathways in milkfish that respond to salinity and temperature changes. PLoS One 10:e0134959

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang PP, Lee TH (2007) New insights into fish ion regulation and mito-chondrion-rich cells. Comp Biochem Physiol A 148:479–497

    Article  Google Scholar 

  • Hwang PP, Lee TH, Lin LY (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 301:R28–R47

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AV, Modyanov NN, Askari A (2002) Role of the self-association of beta subunits in the oligomeric structure of Na+/K+-ATPase. Biochem J 364:293–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen MK, Madsen SS, Kristiansen K (1998) Osmoregulation and salinity effects on the expression and activity of Na+, K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J Exp Zool 282:290–300

    Article  CAS  PubMed  Google Scholar 

  • Kang CK, Liu FH, Chang WB, Lee TH (2012) Effects of low environmental salinity on the cellular profiles and expression of Na+, K+-ATPase and Na+, K+, 2Cl cotransporter 1 of branchial mitochondrion-rich cells in the juvenile marine fish Monodactylus argenteus. Fish Physiol Biochem 38:665–678

    Article  CAS  PubMed  Google Scholar 

  • Kang CK, Chen YC, Chang CH, Tsai SC, Lee TH (2015) Seawater-acclimation abates cold effects on Na+, K+-ATPase activity in gills of the juvenile milkfish, Chanos chanos. Aquaculture 446:67–73

    Article  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  • Liao BK, Chen RD, Hwang PP (2009) Expression regulation of Na+-K+-ATPase alpha1-subunit subtypes in zebrafish gill ionocytes. Am J Physiol Regul Integr Comp Physiol 296:R1897–R1906

    Article  CAS  PubMed  Google Scholar 

  • Lin YM, Chen CN, Lee TH (2003) The expression of gill Na+, K+-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comp Biochem Physiol A Mol Integr Physiol 135:489–497

    Article  CAS  PubMed  Google Scholar 

  • Lin YM, Chen CN, Yoshinaga T, Tsai SC, Shen ID, Lee TH (2006) Short-term effects of hyposmotic shock on Na+/K+ -ATPase expression in gills of the euryhaline milkfish, Chanos chanos. Comp Biochem Physiol A Mol Integr Physiol 143:406–415

    Article  CAS  PubMed  Google Scholar 

  • Lingrel JB, Young RM, Shull MM (1988) Multiple forms of the Na, K-ATPase: their genes and tissue specific expression. Prog Clin Biol Res 268:105–112

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Madsen SS, Kiilerich P, Tipsmark CK (2009) Multiplicity of expression of Na+, K+–ATPase α-subunit isoforms in the gill of Atlantic salmon (Salmo salar): cellular localisation and absolute quantification in response to salinity change. J Exp Biol 212:78–88

    Article  CAS  PubMed  Google Scholar 

  • Madsen SS, Bujak J, Tipsmark CK (2014) Aquaporin expression in the Japanese medaka (Oryzias latipes) in freshwater and seawater: challenging the paradigm of intestinal water transport? J Exp Biol 217:3108–3121

    Article  PubMed  Google Scholar 

  • Malik N, Canfield VA, Beckers M, Gros P, Levenson R (1996) Identification of the mammalian Na, K-ATPase β3 subunit. J Biol Chem 271:22754–22758

    Article  CAS  PubMed  Google Scholar 

  • Malik N, Canfield V, Sanchez-Watts G, Watts AG, Scherer S, Beatty BG, Gros P, Levenson R (1998) Structural organization and chromosomal localization of the human Na, K-ATPase β3 subunit gene and pseudogene. Mamm Genome 9:136–143

    Article  CAS  PubMed  Google Scholar 

  • McCormick SD, Regish AM, Christensen AK (2009) Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J Exp Biol 212:3994–4001

    Article  CAS  PubMed  Google Scholar 

  • McDonough AA, Geering K, Farley RA (1990) The sodium pump needs its beta subunit. FASEB J 4:1598–1605

    CAS  PubMed  Google Scholar 

  • Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium-potassium pump. Nature 450:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Nilsen TO, Ebbesson LOE, Madsen SS, McCormick SD, Andersson E, Björnsson BT, Prunet P, Stefansson SO (2007) Differential expression of gill Na+, K+-ATPase α- and β-subunits, Na+, K+, 2Cl cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J Exp Biol 210:2885–2896

    Article  CAS  PubMed  Google Scholar 

  • Noguchi S, Noda M, Takahashi H, Kawakami K, Ohta T, Nagano K, Hirose T, Inayama S, Kawamura M, Numa S (1986) Primary structure of the beta-subunit of Torpedo californica (Na+ + K+)-ATPase deduced from the cDNA sequence. FEBS Lett 196:315–320

    Article  CAS  PubMed  Google Scholar 

  • Pestov NB, Zhao H, Basrur V, Modyanov NN (2011) Isolation and characterization of BetaM protein encoded by ATP1B4–a unique member of the Na, K-ATPase beta-subunit gene family. Biochem Biophys Res Commun 412:543–548

    Article  CAS  PubMed  Google Scholar 

  • Pressley TA (1988) Ion concentration-dependent regulation of Na, K-pump abundance. J Membr Biol 105:187–195

    Article  CAS  PubMed  Google Scholar 

  • Rajarao SJR, Canfield VA, Mohideen MAP, Yan YL, Postlethwait JH, Cheng KC, Levenson R (2001) The repertoire of Na, K-ATPase α and β subunit genes expressed in the zebrafish, Danio rerio. Genome Res 11:1211–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasekaran SA, Ball WJ Jr, Bander NH, Liu H, Pardee JD, Rajasekaran AK (1999) Reduced expression of beta-subunit of Na, K-ATPase in human clear-cell renal cell carcinoma. J Urol 162:574–580

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran SA, Palmer LG, Quan K, Harper JF, Ball WJ Jr, Bander NH, Peralta Soler A, Rajasekaran AK (2001) Na, K-ATPase beta-subunit is required for epithelial polarization, suppression of invasion, and cell motility. Mol Biol Cell 12:279–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards JG, Semple JW, Bystriansky JS, Schulte PM (2003) Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Onchohynchus mykiss) during salinity transfer. J Exp Biol 206:4475–4486

    Article  CAS  PubMed  Google Scholar 

  • Sasai S, Kaneko T, Hasegawa S, Tsukamoto K (1998) Morphological alteration in two types of gill chloride cells in Japanese eel (Anguilla japonica) during catadromous migration. Can J Zool 76:1480–1487

    Article  Google Scholar 

  • Scheiner-Bobis G (2002) The sodium pumps—its molecular properties and mechanics of ion transport. Eur J Biochem 269:2424–2433

    Article  CAS  PubMed  Google Scholar 

  • Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50:637–718

    CAS  PubMed  Google Scholar 

  • Scott GR, Richards JG, Forbush B, Isenring P, Schulte PM (2004) Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am J Physiol Cell Physiol 287:C300–C309

    Article  CAS  PubMed  Google Scholar 

  • Shinoda T, Ogawa H, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium–potassium pump at 2.4 Å resolution. Nature 459:446–450

    Article  CAS  PubMed  Google Scholar 

  • Shyjan AW, Levenson R (1989) Antisera specific for the α1, α2, α3 and β subunits of the Na, K-ATPase: differential expression of α and β subunit in rat tissue membranes. BioChemistry 28:4531–4535

    Article  CAS  PubMed  Google Scholar 

  • Sucre E, Bossus M, Bodinier C, Boulo V, Charmantier G, Charmantier-Daures M, Cucchi P (2013) Osmoregulatory response to low salinities in the European sea bass embryos: a multi-site approach. J Comp Physiol B 183:83–97

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang CH, Lee TH (2011b) Ion-deficient environment induces the expression of basolateral chloride channel, ClC-3-like protein, in gill mitochondrion-rich cells for chloride uptake of the tilapia, Oreochromis mossambicus. Physiol Biochem Zool 84:54–67

    Article  CAS  PubMed  Google Scholar 

  • Tang CH, Chiu YH, Tsai SC, Lee TH (2009) Relative changes in the abundance of branchial Na + /K + -ATPase alpha-isoform-like proteins in marine euryhaline milkfish (Chanos chanos) acclimated to environments of different salinities. J Exp Zool A 311:522–530

    Article  Google Scholar 

  • Tang CH, Hwang LY, Shen ID, Chiu YH, Lee TH (2011a) Immunolocalization of chloride transporters to gill epithelia of euryhaline teleosts with opposite salinity-induced Na+/K+-ATPase responses. Fish Physiol Biochem 37:709–724

    Article  CAS  PubMed  Google Scholar 

  • Tang CH, Lai DY, Lee TH (2012) Effects of salinity acclimation on Na+/K+-ATPase responses and FXYD11 expression in the gills and kidneys of the Japanese eel (Anguilla japonica). Comp Biochem Physiol A Mol Integr Physiol 163:302–310

    Article  CAS  PubMed  Google Scholar 

  • Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279:C541–C566

    CAS  PubMed  Google Scholar 

  • Tokhtaeva E, Clifford RJ, Kaplan JH, Sachs G, Vagin O (2012) Subunit isoform selectivity in assembly of Na, K-ATPase α-β heterodimers. J Biol Chem 287:26115–26125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida K, Kaneko T, Yamauchi K, Hirano Y (1996) Morphometrical analysis of chloride cell activity in the gill filaments and lamellae and changes in Na+ ,K+-ATPase activity during seawater adaptation in chum salmon fry. J Exp Zool 276:193–200

    Article  CAS  Google Scholar 

  • Underhill AD, Canfield VA, Dahl JP, Gros P, Levenson R (1999) The Na, K-ATPase α4 gene (Atp1a4) encodes a ouabain-resistant α subunit and is tightly linked to the α2 gene (Atp1a2) on mouse chromosome 1. Biochem 38:14746–14751

    Article  CAS  Google Scholar 

  • Versamos S, Diaz JP, Charmantier G, Flik G, Blasco C, Connes R (2002) Branchial chloride cells in sea bass (Dicentrarchus labrax) adapted to fresh water, seawater, and doubly concentrated seawater. J Exp Zool 293:12–26

    Article  Google Scholar 

  • Woo AL, James PF, Lingrel JB (1999) Characterization of the fourth α isoform of the Na, K-ATPase. J Membrane Biol 169:39–44

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Ministry of Science and Technology (MOST), Taiwan, to T.H. Lee (103-2311-B-005-004-MY3; 104-2911-I-005 -502) and the Taiwan Comprehensive University System (103TCUS03). The monoclonal antibodies α5 and α6F were purchased from the Developmental Studies Hybridoma Bank (DSHB) maintained by the Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, under Contract N01-HD-6-2915, NICHD, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Han Lee.

Additional information

Communicated by G. Heldmaier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 13 KB)

360_2017_1066_MOESM2_ESM.tif

Supplementary Fig. S1 Confocal micrographs of the whole-mount milkfish gills showed the background images of gill auto-fluorescence and secondary antibodies. (A) light scope; (B) background level of staining with only the AlexaFluor 546 conjugated goat anti-mouse antibody (for labeling the NKA α subunit in this study; (C) background level of staining with only the AlexaFluor 488 conjugated donkey anti-goat antibody (for labeling the NKA β subunit). F, filament; L, lamella. Scale bar = 50 μm (TIF 7148 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, YC., Chu, KF., Yang, WK. et al. Na+, K+-ATPase β1 subunit associates with α1 subunit modulating a “higher-NKA-in-hyposmotic media” response in gills of euryhaline milkfish, Chanos chanos . J Comp Physiol B 187, 995–1007 (2017). https://doi.org/10.1007/s00360-017-1066-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-017-1066-9

Keywords

Navigation