Skip to main content
Log in

Regulation of mitochondrial metabolism during hibernation by reversible suppression of electron transport system enzymes

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Small hibernators cycle between periods of torpor, with body temperature (T b) approximately 5 °C, and interbout euthermia (IBE), where T b is approximately 37 °C. During entrance into a torpor bout liver mitochondrial respiration is rapidly suppressed by 70 % relative to IBE. We compared activities of electron transport system (ETS) complexes in intact liver mitochondria isolated from 13-lined ground squirrels (Ictidomys tridecemlineatus) sampled during torpor and IBE to investigate potential sites of this reversible metabolic suppression. Flux through complexes I–IV and II–IV was suppressed by 40 and 60 %, respectively, in torpor, while flux through complexes III–IV and IV did not differ between torpor and IBE. We also measured maximal enzyme activity of ETS enzymes in homogenized isolated mitochondria and whole liver tissue. In isolated mitochondria, activities of complexes I and II were significantly lower in torpor relative to IBE, but complexes III, IV, and V did not differ. In liver tissue, only activity of complex II was suppressed during torpor relative to IBE. Despite the significant differences in both ETS flux and maximal activity, the protein content of complexes I and II did not differ between torpor and IBE. These results suggest that the rapid, reversible suppression of mitochondrial metabolism is due to regulatory changes, perhaps by post-translational modification during entrance into a torpor bout, and not changes in ETS protein content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn B-H, Kim H-S, Song S et al (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci 105:14447–14452. doi:10.1073/pnas.0803790105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong C, Staples JF (2010) The role of succinate dehydrogenase and oxaloacetate in metabolic suppression during hibernation and arousal. J Comp Physiol B-Biochem Syst Environ Physiol 180:775–783. doi:10.1007/s00360-010-0444-3

    Article  CAS  Google Scholar 

  • Armstrong C, Thomas RH, Price ER et al (2011) Remodeling mitochondrial membranes during arousal from hibernation. Physiol Biochem Zool 84:438–449

    Article  CAS  PubMed  Google Scholar 

  • Augereau O, Claverol S, Boudes N et al (2005) Identification of tyrosine-phosphorylated proteins of the mitochondrial oxidative phosphorylation machinery. Cell Mol Life Sci CMLS 62:1478–1488. doi:10.1007/s00018-005-5005-7

    Article  CAS  PubMed  Google Scholar 

  • Chatelain EH, Dupuy J-W, Letellier T, Dachary-Prigent J (2010) Functional impact of PTP1B-mediated Src regulation on oxidative phosphorylation in rat brain mitochondria. Cell Mol Life Sci 68:2603–2613. doi:10.1007/s00018-010-0573-6

    Article  Google Scholar 

  • Chung D, Lloyd GP, Thomas RH et al (2011) Mitochondrial respiration and succinate dehydrogenase are suppressed early during entrance into a hibernation bout, but membrane remodeling is only transient. J Comp Physiol B 181:699–711. doi:10.1007/s00360-010-0547-x

    Article  CAS  PubMed  Google Scholar 

  • Chung DJ, Szyszka B, Brown JCL et al (2013) Changes in the mitochondrial phosphoproteome during mammalian hibernation. Physiol Genomics 45:389–399. doi:10.1152/physiolgenomics.00171.2012

    Article  CAS  PubMed  Google Scholar 

  • Cimen H, Han M-J, Yang Y et al (2010) Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry (Mosc) 49:304–311. doi:10.1021/bi901627u

    Article  CAS  Google Scholar 

  • Duerr JM, Podrabsky JE (2010) Mitochondrial physiology of diapausing and developing embryos of the annual killifish Austrofundulus limnaeus: implications for extreme anoxia tolerance. J Comp Physiol [B] 180:991–1003. doi:10.1007/s00360-010-0478-6

    Article  Google Scholar 

  • Finley LWS, Carracedo A, Lee J et al (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19:416–428. doi:10.1016/j.ccr.2011.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev Camb Philos Soc 74:1–40

    Article  CAS  PubMed  Google Scholar 

  • Hazel JR (1972) The effect of temperature acclimation upon succinic dehydrogenase activity from the epaxial muscle of the common goldfish (Carassius auratus L.)-II. Lipid reactivation of the soluble enzyme. Comp Biochem Physiol B 43:863–882

    CAS  PubMed  Google Scholar 

  • Heldmaier G, Elvert R (2004) How to enter torpor: thermodynamic and physiological mechanisms of metabolic depression. In: Barnes BM, Carey HV (eds) Life in the cold. University of Alaska Fairbanks, Fairbanks, pp 185–198

    Google Scholar 

  • Hindle AG, Grabek KR, Epperson LE et al (2014) Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels. Physiol Genomics 46:348–361. doi:10.1152/physiolgenomics.00190.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofer A, Wenz T (2014) Post-translational modification of mitochondria as a novel mode of regulation. Exp Gerontol 56:202–220. doi:10.1016/j.exger.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  • Kirby DM, Thorburn DR, Turnbull DM, Taylor RW (2007) Biochemical assays of respiratory chain complex activity. Methods Cell Biol 80:93–119

    Article  CAS  PubMed  Google Scholar 

  • Komelina NP, Polskaya AI, Amerkhanov ZG (2015) Artificial hypothermia in rats, unlike natural hibernation in ground squirrels Spermophilus undulatus, is not accompanied by the inhibition of respiration in liver mitochondria. Biochem Mosc Suppl Ser Membr Cell Biol 9:293–302. doi:10.1134/S1990747815050062

    Google Scholar 

  • Kuznetsov AV, Veksler V, Gellerich FN et al (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3:965–976. doi:10.1038/nprot.2008.61

    Article  CAS  PubMed  Google Scholar 

  • Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R et al (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1570. doi:10.1126/science.1230381

    Article  CAS  PubMed  Google Scholar 

  • Martin AW, Fuhrman FA (1955) The relationship between summated tissue respiration and metabolic rate in the mouse and dog. Physiol Zool 28:18–34

    Article  Google Scholar 

  • Mathers KE, Staples JF (2015) Saponin-permeabilization is not a viable alternative to isolated mitochondria for assessing oxidative metabolism in hibernation. Biol Open 4:858–864. doi:10.1242/bio.011544

    Article  PubMed  PubMed Central  Google Scholar 

  • Muleme HM, Walpole AC, Staples JF (2006) Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences. Physiol Biochem Zool 79:474–483. doi:10.1086/501053

    Article  CAS  PubMed  Google Scholar 

  • Nelson CJ, Otis JP, Martin SL, Carey HV (2009) Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver. Physiol Genomics 37:43–51. doi:10.1152/physiolgenomics.90323.2008

    Article  CAS  PubMed  Google Scholar 

  • Ogura M, Nakamura Y, Tanaka D et al (2010) Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem Biophys Res Commun 393:73–78. doi:10.1016/j.bbrc.2010.01.081

    Article  CAS  PubMed  Google Scholar 

  • Park J, Chen Y, Tishkoff DX et al (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50:919–930. doi:10.1016/j.molcel.2013.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit PX, O’Connor JE, Grunwald D, Brown SC (1990) Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem FEBS 194:389–397

    Article  CAS  Google Scholar 

  • Reynolds JA, Hand SC (2004) Differences in isolated mitochondria are insufficient to account for respiratory depression during diapause in artemia franciscana embryos. Physiol Biochem Zool PBZ 77:366–377. doi:10.1086/420950

    Article  CAS  PubMed  Google Scholar 

  • Rieske JS (1967) Preparation and properties of reduced coenzyme Q-cytochrome c reductase (complex III of the respiratory chain). Methods Enzym 10:239–245

    Article  CAS  Google Scholar 

  • Salvi M, Brunati AM, Toninello A (2005) Tyrosine phosphorylation in mitochondria: a new frontier in mitochondrial signaling. Free Radic Biol Med 38:1267–1277. doi:10.1016/j.freeradbiomed.2005.02.006

    Article  CAS  PubMed  Google Scholar 

  • Staples JF (2014) Metabolic suppression in mammalian hibernation: the role of mitochondria. J Exp Biol 217:2032–2036. doi:10.1242/jeb.092973

    Article  CAS  PubMed  Google Scholar 

  • Staples JF, Brown JC (2008) Mitochondrial metabolism in hibernation and daily torpor: a review. J Comp Physiol B 178:811–827

    Article  CAS  PubMed  Google Scholar 

  • Takaki M, Nakahara H, Kawatani Y et al (1997) No suppression of respiratory function of mitochondria isolated from the hearts of anesthetized rats with high-dose pentobarbital sodium. Jpn J Physiol 47:87–92. doi:10.2170/jjphysiol.47.87

    Article  CAS  PubMed  Google Scholar 

  • van Breukelen F, Martin SL (2001) Translational initiation is uncoupled from elongation at 18 C during mammalian hibernation. Am J Physiol-Regul Integr Comp Physiol 281:R1374–R1379

    PubMed  Google Scholar 

  • Vaughan DK, Gruber AR, Michalski ML et al (2006) Capture, care, and captive breeding of 13-lined ground squirrels, Spermophilus tridecemlineatus. Lab Anim 35:33–40

    Article  Google Scholar 

Download references

Acknowledgments

We thank Alvin Iverson and staff at the Carman Area Research Center (University of Manitoba) for assistance in trapping animals, and Manitoba Conservation for permission to trap animals. We thank Amanda MacCannell and Natalie Po for their assistance with surgeries and general animal care. We thank Allison McDonald for the use of her Oroboros-2K for the duration of this study, and we thank Dr. Timothy Regnault for assistance with MitoProfile immunoblots. This study was supported financially by a Discovery Grant to JFS from the Natural Sciences and Engineering Research Council (Grant Number RGPIN-2014-04860) and Queen Elizabeth II Graduate Scholarships in Science and Technology to KEM and SVM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine E. Mathers.

Additional information

Communicated by H.V. Carey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathers, K.E., McFarlane, S.V., Zhao, L. et al. Regulation of mitochondrial metabolism during hibernation by reversible suppression of electron transport system enzymes. J Comp Physiol B 187, 227–234 (2017). https://doi.org/10.1007/s00360-016-1022-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-1022-0

Keywords

Navigation