Skip to main content

Advertisement

Log in

Impact of dehydration on the forebrain preoptic recess walls in the mudskipper, Periophthalmus modestus: a possible locus for the center of thirst

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The forebrain lamina terminalis has not yet been examined for the role of osmosensing in teleosts, although the thirst center is well known to be present in this vascular permeable forebrain region in mammals. Here, we examined vascular permeability and neuronal responsiveness to dehydration in the lamina terminalis of the mudskipper, a euryhaline goby. Evans blue and N-hydroxysulfosuccinimide-biotin both bind to blood proteins, and are impermeable to the blood–brain barrier. Intraperitoneal injection of these probes stained the walls of the preoptic recess (PR) of the third ventricle, indicating increased vascular permeability in this region. When mudskippers kept in isotonic brackish water (ca. 11 psu) were challenged to seawater (ca. 34 psu) for 3 h, body water content showed a 1 % decrease, compared with mudskippers without hypertonic challenge. Simultaneously, the number of immunohistochemically identified cFos-expressing neurons in the anterior parvocellular preoptic nucleus (PPa) of the PR walls increased in a site-specific manner by approximately 1.6-fold compared with controls. Thus, these findings indicate that PPa neurons are activated, following dehydration in mudskippers. Taken together, the vascularly permeable PR walls may be involved in osmosensing, as in the mammalian thirst center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amano M, Mizusawa N, Okubo K, Amiya N, Mizusawa K, Chiba H, Yamamoto N, Takahashi A (2014) Cloning of corticotropin-releasing hormone (CRH) precursor cDNA and immunohistochemical detection of CRH peptide in the brain of the Japanese eel, paying special attention to gonadotropin-releasing hormone. Cell Tissue Res 356:243–251. doi:10.1007/s00441-013-1784-6

    Article  CAS  PubMed  Google Scholar 

  • Amer S, Brown JA (1995) Glomerular actions of arginine vasotocin in the in situ perfused trout kidney. Am J Physiol 269:R775–R780

    CAS  PubMed  Google Scholar 

  • Anadón R, Molist P, Rodríguez-Moldes I, López JM, Quintela I, Cerviño MC, Barja P, González A (2000) Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). J Comp Neurol 420:139–170. doi:10.1002/(SICI)1096-9861(20000501)420:2<139:AID-CNE1>3.0.CO;2-T

    Article  PubMed  Google Scholar 

  • Anderson WG, Takei Y, Hazon N (2002) Osmotic and volaemic effects on drinking rate in elasmobranch fish. J Exp Biol 205:1115–1122

    PubMed  Google Scholar 

  • Ando M, Fujii Y, Kadota T, Kozaka T, Mukuda T, Takase I, Kawahara A (2000a) Some factors affecting drinking behavior and their interactions in seawater-acclimated eels, Anguilla japonica. Zool Sci 17:171–178. doi:10.2108/zsj.17.171

    Article  Google Scholar 

  • Ando M, Mukuda T, Takase I (2000b) Integrated aspects of osmoregulation in eels acclimated to sea water. Trends Comp Biochem Physiol 6:85–94

    CAS  Google Scholar 

  • Ando M, Mukuda T, Kozaka T (2003) Water metabolism in the eel acclimated to seawater: from mouth to intestine. Comp Biochem Physiol B 136:621–633. doi:10.1016/S1096-4959(03)00179-9

    Article  PubMed  Google Scholar 

  • Avella M, Part P, Ehrenfeld J (1999) Regulation of Cl secretion in seawater fish (Dicentrarchus labrax) gill respiratory cells in primary culture. J Physiol 516:353–363. doi:10.1111/j.1469-7793.1999.0353v.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bains JS, Potyok A, Ferguson AV (1992) Angiotensin II actions in paraventricular nucleus: functional evidence for neurotransmitter role in efferents originating in subfornical organ. Brain Res 599:223–229. doi:10.1016/0006-8993(92)90395-P

    Article  CAS  PubMed  Google Scholar 

  • Balment RJ, Lu W, Weybourne E, Warne JM (2006) Arginine vasotocin a key hormone in fish physiology and behaviour: a review with insights from mammalian models. Gen Comp Endocrinol 147:9–16. doi:10.1016/j.ygcen.2005.12.022

    Article  CAS  PubMed  Google Scholar 

  • Barreiro-Iglesias A, Villar-Cerviño V, Villar-Cheda B, Anadón R, Rodicio MC (2008) Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates. J Comp Neurol 511:438–453. doi:10.1002/cne.21844

    Article  CAS  PubMed  Google Scholar 

  • Castro A, Becerra M, Anadón R, Manso MJ (2008) Distribution of calretinin during development of the olfactory system in the brown trout, Salmo trutta fario: comparison with other immunohistochemical markers. J Chem Neuroanat 35:306–316. doi:10.1016/j.jchemneu.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  • Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijón J, Arévalo R (2004) Cholinergic elements in the zebrafish central nervous system: histochemical and immunohistochemical analysis. J Comp Neurol 474:75–107. doi:10.1002/cne.20111

    Article  PubMed  Google Scholar 

  • Dall W, Milward NE (1969) Water intake, gut absorption and sodium fluxes in amphibious and aquatic fishes. Comp Biochem Physiol 30:247–260. doi:10.1016/0010-406X(69)90808-1

    Article  CAS  PubMed  Google Scholar 

  • Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686

    CAS  PubMed  Google Scholar 

  • Fontaine R, Affaticati P, Bureau C, Colin I, Demarque M, Dufour S, Vernier P, Yamamoto K, Pasqualini C (2015) Dopaminergic neurons controlling anterior pituitary functions: anatomy and ontogenesis in zebrafish. Endocrinol 156:2934–2948. doi:10.1210/en.2015-1091

    Article  CAS  Google Scholar 

  • Gibson RN (1986) Intertidal teleosts: life in a fluctuating environment. In: Pitcher PJ (ed) The behaviour of teleost fishes. Springer, New York, pp 388–408

    Chapter  Google Scholar 

  • Gómez-Segade P, Segade LA, Anadon R (1991) Ultrastructure of the organum vasculosum laminae terminalis in the advanced teleost Chelon labrosus (Risso, 1826). J Hirnforsch 32:69–77

    PubMed  Google Scholar 

  • Gonzalez RJ (2012) The physiology of hyper-salinity tolerance in teleost fish: a review. J Comp Physiol B 182:321–329. doi:10.1007/s00360-011-0624-9

    Article  CAS  PubMed  Google Scholar 

  • Gordon MS, Ng WW, Yip AY (1978) Aspects of the physiology of terrestrial life in amphibious fishes. III. The Chinese mudskipper Periophthalmus cantonensis. J Exp Biol 72:57–75

    CAS  PubMed  Google Scholar 

  • Hirano T, Hasegawa S (1984) Effects of angiotensins and other vasoactive substances on drinking in the eel, Anguilla japonica. Zool Sci 1:106–113

    CAS  Google Scholar 

  • Hirayama J, Cardone L, Doi M, Sassone-Corsi P (2005) Common pathways in circadian and cell cycle clocks: light-dependent activation of Fos/AP-1 in zebrafish controls CRY-1a and WEE-1. Proc Natl Acad Sci 102:10194–10199. doi:10.1073/pnas.0502610102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiroi J, McCormick SD (2012) New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir Physiol Neurobiol 184:257–268. doi:10.1016/j.resp.2012.07.019

    Article  CAS  PubMed  Google Scholar 

  • Hwang PP, Sun CM, Wu SM (1989) Changes of plasma osmolality, chloride concentration and gill Na-K-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Marine Biol 100:295–299. doi:10.1007/BF00391142

    Article  Google Scholar 

  • Hyodo S, Tsukada T, Takei Y (2004) Neurohypophysial hormones of dogfish, Triakis scyllium: structures and salinity-dependent secretion. Gen Comp Endocrinol 138:97–104. doi:10.1016/j.ygcen.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  • Ip YK, Lee CG, Low WP, Lam TJ (1991) Osmoregulation in the mudskipper, Boleophthalmus boddaerti I. Responses of branchial cation activated and anion stimulated adenosine triphosphatases to changes in salinity. Fish Physiol Biochem 9:63–68. doi:10.1007/BF01987612

    Article  CAS  PubMed  Google Scholar 

  • Jeong JY, Kwon HB, Ahn JC, Kang D, Kwon SH, Park JA, Kim KW (2008) Functional and developmental analysis of the blood-brain barrier in zebrafish. Brain Res Bull 75:619–628. doi:10.1016/j.brainresbull.2007.10.043

    Article  CAS  PubMed  Google Scholar 

  • Johnson AK, Cunningham JT, Thunhorst RL (1996) Integrative role of the lamina terminalis in the regulation of cardiovascular and body fluid homeostasis. Clin Exp Pharmacol Physiol 23:183–191. doi:10.1111/j.1440-1681.1996.tb02594.x

    Article  CAS  PubMed  Google Scholar 

  • Kaiya H, Takei Y (1996) Changes in plasma atrial and ventricular natriuretic peptide concentrations after transfer of eels from freshwater to seawater or vice versa. Gen Comp Endocrinol 104:337–345. doi:10.1006/gcen.1996.0179

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto K, Kawashima S (1986) Effect of glucocorticoids and vasopressin on the regulation of neurohypophyseal hormone-containing axons after hypophysectomy. Zool Sci 3:723–726

    CAS  Google Scholar 

  • Kelly SP, Chow INK, Woo NYS (1999) Haloplasticity of black sea bream (Mylio macrocephalus): hypersaline to freshwater acclimation. J Exp Zool 226:226–241. doi:10.1002/(SICI)1097-010X(19990215)283:3<226:AID-JEZ2>3.0.CO;2-8

    Article  Google Scholar 

  • Knowles WD, Phillips MI (1980) Angiotensin II responsive cells in the organum vasculosum lamina terminalis (OVLT) recorded in hypothalamic brain slices. Brain Res 197:256–259. doi:10.1016/0006-8993(80)90455-2

    Article  CAS  PubMed  Google Scholar 

  • Konno N, Hyodo S, Yamaguchi Y, Matsuda K, Uchiyama M (2010) Vasotocin/V2-type receptor/aquaporin axis exists in African lungfish kidney but is functional only in terrestrial condition. Endocrinology 151:1089–1096. doi:10.1210/en.2009-1070

    Article  CAS  PubMed  Google Scholar 

  • Kozaka T, Fujii Y, Ando M (2003) Central effects of various ligands on drinking behavior in eels acclimated to seawater. J Exp Biol 206:687–692. doi:10.1242/jeb.00146

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Ferguson AV (1993) Subfornical organ efferents to paraventricular nucleus utilize angiotensin as a neurotransmitter. Am J Physiol 265:R302–R309

    CAS  PubMed  Google Scholar 

  • Ma PM (1994) Catecholaminergic systems in the zebrafish. I. Number, morphology, and histochemical characteristics of neurons in the locus coeruleus. J Comp Neurol 344:242–255

    Article  CAS  PubMed  Google Scholar 

  • Madsen SS (1990a) Enhanced hypoosmoregulatory response to growth hormone after cortisol treatment in immature rainbow trout, Salmo gairdneri. Fish Physiol Biochem 8:271–279. doi:10.1007/BF00003422

    Article  CAS  PubMed  Google Scholar 

  • Madsen SS (1990b) The role of cortisol and growth hormone in seawater adaptation and development of hypoosmoregulatory mechanisms in sea trout parr (Salmo trutta trutta). Gen Comp Endocrinol 79:1–11. doi:10.1016/0016-6480(90)90082-W

    Article  CAS  PubMed  Google Scholar 

  • Martemyanov VI (2013) Use of body-water content to assess the physiological state of roach Rutilus rutilus L. in nature condition. Inland Water Biol 3:246–248. doi:10.1134/S1995082913030103

    Article  Google Scholar 

  • McKinley MJ, Johnson AK (2004) The physiological regulation of thirst and fluid intake. News Physiol Sci 19:1–6. doi:10.1152/nips.01470.2003

    PubMed  Google Scholar 

  • McKinley MJ, Badoer E, Oldfield BJ (1992) Intravenous angiotensin II induces Fos-immunoreactivity in circumventricular organs of the lamina terminalis. Brain Res 594:295–300. doi:10.1016/0006-8993(92)91138-5

    Article  CAS  PubMed  Google Scholar 

  • McKinley MJ, Hards DK, Oldfield BJ (1994) Identification of neural pathways activated in dehydrated rats by means of Fos-immunohistochemistry and neural tracing. Brain Res 653:305–314. doi:10.1016/0006-8993(94)90405-7

    Article  CAS  PubMed  Google Scholar 

  • McKinley MJ, Mathai ML, Pennington G, Rundgren M, Vivas L (1999) Effect of individual or combined ablation of the nuclear groups of the lamina terminalis on water drinking in sheep. Am J Physiol 276:R673–R683

    CAS  PubMed  Google Scholar 

  • Mukuda T, Ando M (2003) Medullary motor neurones associated with drinking behaviour of Japanese eels. J Fish Biol 62:1–12. doi:10.1046/j.1095-8649.2003.00002.x

    Article  Google Scholar 

  • Mukuda T, Ando M (2010) Central regulation of the pharyngeal and upper esophageal reflexes during swallowing in the Japanese eel. J Comp Physiol A 196:111–122. doi:10.1007/s00359-009-0498-4

    Article  Google Scholar 

  • Mukuda T, Matsunaga Y, Kawamoto K, Yamaguchi K, Ando M (2005) “Blood-contacting neurons” in the brain of the Japanese eel Anguilla japonica. J Exp Zool A 303:366–376. doi:10.1002/jez.a.134

    Article  Google Scholar 

  • Mukuda T, Hamasaki S, Koyama Y, Takei Y, Kaidoh T, Inoué T (2013) A candidate of organum vasculosum of the lamina terminalis with neuronal connections to neurosecretory preoptic nucleus in eels. Cell Tissue Res 353:525–538. doi:10.1007/s00441-013-1663-1

    Article  CAS  PubMed  Google Scholar 

  • Nelson DO (1989) Altered angiotensin II sensitivity of neurons in the organum vasculosum lamina terminalis region of the spontaneously hypertensive rat. Brain Res 444:46–52. doi:10.1016/0006-8993(88)90911-0

    Article  Google Scholar 

  • Nobata S, Ando M (2013) Regulation of drinking. In: Trischitta F, Takei Y, Sébert P (eds) Eel physiology. CRC Press, Boca Raton, pp 225–248

    Chapter  Google Scholar 

  • Nobata S, Takei Y (2011) The area postrema in hindbrain is a central player for regulation of drinking behavior in Japanese eels. Am J Physiol 300:R1569–R1577. doi:10.1152/ajpregu.00056.2011

    CAS  Google Scholar 

  • Nobata S, Ando M, Takei Y (2013) Hormonal control of drinking behavior in teleost fishes; insights from studies using eels. Gen Comp Endocrinol 192:214–221. doi:10.1016/j.ygcen.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  • O’Connell LA, Matthews BJ, Hofmann HA (2012) Isotocin regulates paternal care in a monogamous cichlid fish. Horm Behav 61:725–733. doi:10.1016/j.yhbeh.2012.03.009

    Article  PubMed  Google Scholar 

  • Okuya S, Inenaga K, Kaneko T, Yamashita H (1987) Angiotensin II sensitive neurons in the supraoptic nucleus, subfornical organ and anteroventral third ventricle of rats in vitro. Brain Res 402:58–67. doi:10.1016/0006-8993(87)91047-X

    Article  CAS  PubMed  Google Scholar 

  • Oldfield BJ, Bicknell RJ, McAllen RM, Weisinger RS, McKinley MJ (1991) Intravenous hypertonic saline induces Fos immunoreactivity in neurons throughout the lamina terminalis. Brain Res 561:151–156. doi:10.1016/0006-8993(91)90760-S

    Article  CAS  PubMed  Google Scholar 

  • Pérez SE, Yáñez J, Marín O, Anadón R, González A, Rodríguez-Moldes I (2000) Distribution of choline acetyltransferase (ChAT) immunoreactivity in the brain of the adult trout and tract-tracing observations on the connections of the nuclei of the isthmus. J Comp Neurol 428:450–474. doi:10.1002/1096-9861(20001218)428:3<450:AID-CNE5>3.0.CO;2-T

    Article  PubMed  Google Scholar 

  • Pombal MA, Marín O, González A (2001) Distribution of choline acetyltransferase-immunoreactive structures in the lamprey brain. J Comp Neurol 431:105–126. doi:10.1002/1096-9861(20010226)431:1<105:AID-CNE1058>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  • Roberts BL, Meredith GE, Maslam S (1989) Immunocytochemical analysis of the dopamine system in the brain and spinal cord of the European eel, Anguilla anguilla. Anat Embryol (Berl) 180:401–412. doi:10.1007/BF00311171

    Article  CAS  Google Scholar 

  • Rodriguez-Gömez FJ, Rendön-Unceta MC, Sarasquete C, Muñoz-Cueto JA (2000) Localization of tyrosine hydroxylase-immunoreactivity in the brain of the Senegalese sole, Solea senegalensis. J Chem Neuroanat 19:17–32. doi:10.1016/S0891-0618(00)00047-8

    Article  PubMed  Google Scholar 

  • Rowland NE (1998) Brain mechanisms of mammalian fluid homeostasis: insights from use of immediate early gene mapping. Neurosci Biobehav Rev 23:49–63. doi:10.1016/S0149-7634(97)00068-7

    Article  CAS  Google Scholar 

  • Sakamoto T, Yokota S, Ando M (2000) Rapid morphological oscillation of mitochondrion-rich cell in estuarine mudskipper following salinity changes. J Exp Zool 286:666–669

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Kozaka T, Takahashi A, Kawauchi H, Ando M (2001) Medaka (Oryzias latipes) as a model for hypoosmoregulation of euryhaline fishes. Aquaculture 193:347–354. doi:10.1016/S0044-8486(00)00471-3

    Article  CAS  Google Scholar 

  • Sakamoto T, Nishiyama Y, Ikeda A, Takahashi H, Hyodo S, Kagawa N, Sakamoto H (2015) Neurohypophysial hormones regulate amphibious behaviour in the mudskipper goby. PLoS One 10:e0134605. doi:10.1371/journal.pone.0134605

    Article  PubMed  PubMed Central  Google Scholar 

  • Sladek CD, Johnson AK (1983) Effect of anteroventral third ventricle lesions on vasopressin release by organ-cultured hypothalamo-neurohypophyseal explants. Neuroendocrinol 37:78–84. doi:10.1159/000123519

    Article  CAS  Google Scholar 

  • Sueiro C, Carrera I, Rodríguez-Moldes I, Molist P, Anadón R (2003) Development of catecholaminergic systems in the spinal cord of the dogfish Scyliorhinus canicula (Elasmobranchs). Brain Res Dev Brain Res 142:141–150. doi:10.1016/S0165-3806(03)00062-2

    Article  CAS  PubMed  Google Scholar 

  • Sunn N, McKinley MJ, Oldfield BJ (2003) Circulating angiotensin II activates neurones in circumventricular organs of the lamina terminalis that project to the bed nucleus of the stria terminalis. J Neuroendocrinol 15:725–731. doi:10.1046/j.1365-2826.2003.00969.x

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Hirano T, Kobayashi H (1979) Angiotensin and water intake in the Japanese eel, Anguilla japonica. Gen Comp Endocrinol 38:466–475. doi:10.1016/0016-6480(79)90155-2

    Article  CAS  PubMed  Google Scholar 

  • Takei Y, Okubo J, Yamaguchi K (1988) Effects of cellular dehydration on drinking and plasma angiotensin II level in the eel, Anguilla japonica. Zool Sci 5:43–51

    CAS  Google Scholar 

  • Thrasher TN, Simpson JB, Ramsay DJ (1982) Lesions of the subfornical organ block angiotensin-induced drinking in the dog. Neuroendocrinology 35:68–72

    Article  CAS  PubMed  Google Scholar 

  • Tsukada T, Nobata S, Hyodo S, Takei Y (2007) Area postrema, a brain circumventricular organ, is the site of antidipsogenic action of circulatin atrial natriuretic peptide in eels. J Exp Biol 210:3970–3978. doi:10.1242/jeb.010645

    Article  CAS  PubMed  Google Scholar 

  • Tsuneki K (1986) A survey of occurrence of about seventeen circumventricular organs in brains of various vertebrates with special reference to lower groups. J Hirnforsch 27:441–470

    CAS  PubMed  Google Scholar 

  • Uyama O, Okamura N, Yanase M, Narita M, Kawabata K, Sugita M (1988) Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab 8:282–284. doi:10.1038/jcbfm.1988.59

    Article  CAS  PubMed  Google Scholar 

  • Wai MS, Lorke DE, Webb SE, Yew DT (2006) The pattern of c-fos activation in the CNS is related to behavior in the mudskipper, Periophthalmus cantonensis. Behav Brain Res 167:318–327. doi:10.1016/j.bbr.2005.09.018

    Article  CAS  PubMed  Google Scholar 

  • Warne JM, Bond H, Weybourne E, Sahajpal V, Lu W, Balment RJ (2005) Altered plasma and pituitary arginine vasotocin and hypothalamic provasotocin expression in flounder (Platichthys flesus) following hypertonic challenge and distribution of vasotocin receptors within the kidney. Gen Comp Endocrinol 144:240–247. doi:10.1016/j.ygcen.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Sakihara T, Mukuda T, Ando M (2007) Antagonistic effects of vasotocin and isotocin on the upper esophageal sphincter muscle of the eel acclimated to seawater. J Comp Physiol B 177:867–873. doi:10.1007/s00360-007-0184-1

    Article  CAS  PubMed  Google Scholar 

  • Zucker DK, Wooten GF, Lothman EW (1983) Blood-brain barrier changes with kainic acid-induced limbic seizures. Exp Neurol 79:422–433. doi:10.1016/0014-4886(83)90223-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Y. Furukawa (Hiroshima University) and Dr. M. Ando for valuable suggestions. We also thank Y. Koyama and M. Matsuura for their technical support. The study was supported, in part, by a Women Researchers Grant from Hiroshima University to S.H. and by a Grant-in-Aid for Young Scientists (B) of Japan Society for the Promotion of Science (JSPS) KAKENHI to T.M. (No. 25840118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Mukuda.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamasaki, S., Mukuda, T., Kaidoh, T. et al. Impact of dehydration on the forebrain preoptic recess walls in the mudskipper, Periophthalmus modestus: a possible locus for the center of thirst. J Comp Physiol B 186, 891–905 (2016). https://doi.org/10.1007/s00360-016-1005-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-1005-1

Keywords

Navigation