Skip to main content
Log in

The 12-day thermoregulatory metamorphosis of Red-winged Blackbirds (Agelaius phoeniceus)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We examined development of endothermy in altricial Red-winged Blackbirds (Agelaius phoeniceus) by measuring oxygen consumption \((\dot{V}{\text{o}}_{2} )\), body temperature and ventilation at ambient temperatures from 35 to 15 °C. Mitochondrial respiration of permeabilized skeletal muscle was also measured from breast (pectoralis) and thigh (femorotibialis) muscles. Animals were studied from the first day of hatching through fledging (12 days post-hatch, dph). Nestling whole-body metabolic rate began to show an endothermic response to cold temperature midway between hatching and fledging. Nestlings less than 5 dph were unable to maintain elevated \(\dot{V}{\text{o}}_{2}\) and body temperature when exposed to gradually decreasing temperature, whereas 7 dph nestlings maintained \(\dot{V}{\text{o}}_{2}\) until ~25 °C, after which \(\dot{V}{\text{o}}_{2}\) decreased. From 10 dph to fledging, animals maintained elevated \(\dot{V}{\text{o}}_{2}\) and body temperature when exposed to gradual cooling; full endothermic capacity was achieved. Ventilation followed a similar developmental trend to that of \(\dot{V}{\text{o}}_{2}\), with increases in 10 dph fledglings occurring in tidal volume rather than ventilation frequency. LEAK respiration and oxidative phosphorylation (OXPHOS) through complex I of breast muscle mitochondria increased significantly after 3 dph. Expression of avUCP and PCG- mRNA increased significantly at 3 dph and remained elevated in both skeletal muscle types. Increased metabolic capacity at the cellular level occurred prior to that of the whole animal. This change in whole animal metabolic capacity increased steadily upon hatching as evidenced by the shift of metabolic rate from an ectothermic to endothermic phenotype and the increase of mitochondrial OXPHOS activity of the shivering muscles of this altricial avian species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreyev AY, Bondareva T, Dedukhova V, Mokhova E, Skulachev V, Tsofina L, Volkov N, Vygodina T (1989) The ATP/ADP antiporter is involved in the uncoupling effect of fatty acids. Anion carriers of mitochondrial membranes. Springer, Berlin, pp 159–168

    Chapter  Google Scholar 

  • Austin GT, Ricklefs RE (1977) Growth and development of the Rufous-winged Sparrow (Aimophila carpalis). Condor 79:37–50

    Article  Google Scholar 

  • Baarendse PJJ, Debonne M, Decuypere E, Kemp B, Van Den Brand H (2007) Ontogeny of avian thermoregulation from a neural point of view. Worlds Poult Sci J 63:267–276

    Article  Google Scholar 

  • Bech C, Østnes J (1999) Influence of body composition on the metabolic rate of nestling European shags (Phalacrocorax aristotelis). J Comp Physiol B 169:263–270

    Article  Google Scholar 

  • Brand M (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 35:811–820

    Article  CAS  PubMed  Google Scholar 

  • Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93

    Article  CAS  PubMed  Google Scholar 

  • Cadenas S, Buckingham JA, St-Pierre J, Dickinson K, Jones RB, Brand MD (2000) AMP decreases the efficiency of skeletal-muscle mitochondria. Biochem J 351:307–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi I, Ricklefs RE, Shea RE (1993) Skeletal muscle growth, enzyme activities, and the development of thermogenesis: a comparison between altricial and precocial birds. Physiol Zool 66:455–473

    Article  CAS  Google Scholar 

  • Collin A, Buyse J, van As P, Darras VM, Malheiros RD, Moraes VMB, Reyns GE, Taouis M, Decuypere E (2003) Cold-induced enhancement of avian uncoupling protein expression, heat production, and triiodothyronine concentrations in broiler chicks. Gen Comp Endocrinol 130:70–77

    Article  CAS  PubMed  Google Scholar 

  • Dawson WR, Evans FC (1960) Relation of growth and development to temperature regulation in nestling vesper sparrows. Condor 62:329–340

    Article  Google Scholar 

  • Dawson WR, Whittow GC (2000) Regulation of body temperature. In: Whittow GC (ed) Sturkie’s Avian Physiology. Academic Press, New York, pp 343–390

    Chapter  Google Scholar 

  • Dégletagne D, Roussel D, Rouanet JL, Baudimont F, Moureaux E, Harvey S, Duchamp C, LeMaho Y, Raccurt M (2013) Growth prior to thermogenesis for a quick fledging of Adélie penguin chicks (Pygoscelis adeliae). PLOS One 8:e74154

    Article  PubMed  PubMed Central  Google Scholar 

  • Desvergne B, Michalik L, Wahli W (2004) Be fit or be sick: peroxisome proliferator-activated receptors are down the road. Mol Endocrinol 18:1321–1332

    Article  CAS  PubMed  Google Scholar 

  • Dietz MW (1995) Development of metabolism and thermoregulation in galliforms. Effects of body mass, growth rate and functional maturity. Ph.D. thesis, Utrecht University, The Netherlands

  • Duchamp C, Barre H (1993) Skeletal muscle as the major site of nonshivering thermogenesis in cold-acclimated ducklings. Am J Physiol Regulatory Integrative Comp Physiol 265(5):R1076–R1083

    CAS  Google Scholar 

  • Dunn EH (1976) Development of endothermy and existence energy expenditure of nestling double-crested cormorants. Condor 78:350–356

    Article  Google Scholar 

  • Dzialowski EM, Burggren WW, Komoro T, Tazawa H (2007) Development of endothermic metabolic response in embryos and hatchlings of the emu (Dromaius novaehollandiae). Respir Physiol Neurobiol 155:286–292

    Article  CAS  PubMed  Google Scholar 

  • Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otín M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ (2003) A signaling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22:4103–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteves TC, Brand MD (2005) The reactions catalyzed by the mitochondrial uncoupling proteins UCP2 and UCP3. BBA-Bioenergetics 1709:35–44

    Article  CAS  PubMed  Google Scholar 

  • Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J (2001) Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 15:2048–2050

    CAS  PubMed  Google Scholar 

  • Hirabayashi M, Ijiri D, Kamei Y, Tajima A, Kanai Y (2005) Transformation of skeletal muscle from fast- to slow-twitch during acquisition of cold tolerance in the chick. Endocrinol 146:399–405

    Article  CAS  Google Scholar 

  • Hohtola E (2004) Shivering thermogenesis in birds and mammals. In: Life in the cold: evolution, mechanisms, adaptation, and application. 12th International Hibernation Symposium, pp 241–252

  • Hohtola E, Visser H (1998) Development of locomotion and endothermy in altricial and precocial birds. In: Starck JM, Ricklefs RE (eds) Avian growth and development. Oxford University Press, Oxford, pp 157–173

    Google Scholar 

  • Hood DA, Irrcher I, Ljubicic V, Joseph A (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209:2265–2275

    Article  CAS  PubMed  Google Scholar 

  • Houten SM, Auwerx J (2004) PGC-1α: turbocharging mitochondria. Cell 119:5–7

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Else PL (2000) Mechanisms underlying the cost of living in animals. Annu Rev Physiol 62:207–235

    Article  CAS  PubMed  Google Scholar 

  • Johnston DW (1971) The absence of brown adipose tissue in birds. Comp Biochem Physiol A 40:1107–1108

    Article  CAS  PubMed  Google Scholar 

  • Kahl MP (1962) Bioenergetics of growth in nestling wood storks. Condor 64:169–183

    Article  Google Scholar 

  • Kuroda O, Matsunaga C, Whittow GC, Tazawa H (1990) Comparative metabolic responses to prolonged cooling in precocial duck (Anas domestica) and altricial pigeon (Columba domestica) embryos. Comp Biochem Physiol A 95:407–410

    Article  CAS  PubMed  Google Scholar 

  • LeMoine CM, Lougheed SC, Moyes CD (2010) Modular evolution of PGC-1α in vertebrates. J Mol Evol 70:492–505

    Article  CAS  PubMed  Google Scholar 

  • Lilja C (1983) A comparative study of postnatal growth and organ development in some species of birds. Growth 47:317–339

    CAS  PubMed  Google Scholar 

  • Marjoniemi K, Hohtola E (1999) Shivering thermogenesis in leg and breast muscles of galliform chicks and nestlings of the domestic pigeon. Physiol Biochem Zool 72:484–492

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga C, Mathiu P, Whittow G, Tazawa H (1989) Oxygen consumption of brown noddy (Anous stolidus) embryos in a quasiequilibrium state at lowered ambient temperatures. Comp Biochem Physiol A 93:707–710

    Article  CAS  PubMed  Google Scholar 

  • McNabb FM, Stanton FW, Dicken SG (1984) Post-hatching thyroid development and body growth in precocial vs altricial birds. Comp Biochem Physiol A 18:629–635

    Article  Google Scholar 

  • Mezentseva NV, Kumaratilake JS, Newman SA (2008) The brown adipocyte differentiation pathway in birds: an evolutionary road not taken. BMC Biol 6:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Mujahid A, Sato K, Akiba Y, Toyomizu M (2006) Acute heat stress stimulates mitochondrial superoxide production in broiler skeletal muscle, possibly via downregulation of uncoupling protein content. Poult Sci 85:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Mujahid A, Akiba Y, Toyomizu M (2007) Acute heat stress induces oxidative stress and decreases adaptation in young white leghorn cockerels by downregulation of avian uncoupling protein. Poult Sci 86:364–371

    Article  CAS  PubMed  Google Scholar 

  • Mujahid A, Akiba Y, Toyomizu M (2009) Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297:R690–R698

    Article  CAS  PubMed  Google Scholar 

  • Olson JM (1992) Growth, the development of endothermy, and the allocation of energy in red-winged blackbirds (Agelaius phoeniceus) during the nestling period. Physioll Zool 65:124–152

    Article  Google Scholar 

  • Olson JM (1994) The ontogeny of shivering thermogenesis in the Red-winged Blackbird (Agelaius phoeniceus). J Exp Biol 191:59–88

    PubMed  Google Scholar 

  • Olson JM (2001) Ontogeny of catabolic and morphological properties of skeletal muscle of the red-winged blackbird (Agelaius phoeniceus). J Comp Physiol B 171:527–542

    Article  CAS  PubMed  Google Scholar 

  • Olson JM, Dawson WR, Camilliere JJ (1988) Fat from Black-capped Chickadees: avian brown adipose tissue? Condor 90:529–537

    Article  Google Scholar 

  • Olson JM, McNabb FM, Jablonski MS, Ferris DV (1999) Thyroid development in relation to the development of endothermy in the Red-winged Blackbird (Agelaius phoeniceus). Gen Comp Endocrinol 116:204–212

    Article  CAS  PubMed  Google Scholar 

  • Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58

    Article  CAS  PubMed  Google Scholar 

  • Price ER, Paladino FV, Strohl KP, Santidrián P, Klann K, Spotila JR (2007) Respiration in neonate sea turtles. Comp Biochem Physiol A 146:422–428

    Article  Google Scholar 

  • Raimbault S, Dridi S, Denjean F, Lachuer J, Couplan E, Bouillaud F, Bordas A, Duchamp C, Taouis M, Ricquier D (2001) An uncoupling protein homologue putatively involved in facultative muscle thermogenesis in birds. Biochem J 353:441–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey B, Roussel D, Romestaing C, Belouze M, Rouanet JL, Desplanches D, Sibille B, Servais S, Duchamp C (2010) Up-regulation of avian uncoupling protein in cold-acclimated and hyperthyroid ducklings prevents reactive oxygen species production by skeletal muscle mitochondria. BMC Physiol 10:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhen T, Metzger K, Schroeder A, Woodward R (2007) Expression of putative sex-determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina. Sex Dev 1:255–270

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs RE (1983) Avian postnatal development. Avian Biol 7:1–83

    Article  Google Scholar 

  • Ricklefs RE, Williams JB (2003) Metabolic responses of shorebird chicks to cold stress: hysteresis of cooling and warming phases. J Exp Biol 206:2883–2893

    Article  PubMed  Google Scholar 

  • Rolfe DFS, Brand MD (1997) The physiological significance of mitochondrial proton leak in animal cells and tissues. Biosci Rep 17:9–16

    Article  CAS  PubMed  Google Scholar 

  • Saarela S, Keith JS, Hohtola E, Trayhurn P (1991) Is the “mammalian” brown fat-specific mitochondrial uncoupling protein present in adipose tissues of birds? Comp Biochem Physiol B 100:45–49

    CAS  PubMed  Google Scholar 

  • Sbong S, Dzialowski EM (2007) Respiratory and cardiovascular responses to acute hypoxia and hyperoxia in internally pipped chicken embryos. Comp Biochem Physiol A 148:761–768

    Article  Google Scholar 

  • Schaeffer PJ (1998) The development of the ventilatory response to cold in very young rats. Comp Biochem Physiol A 119:407–414

    Article  CAS  Google Scholar 

  • Sirsat TS and Dzialowski EM (2016) Ventilation changes associated with hatching and maturation of an endothermic phenotype in the Pekin duck, Anas platyrhynchos. Am J Physiol Regul Integr Comp Physiol. doi: 10.1152/ajpregu.00274.2015

  • Sirsat SKG, Sirsat TS, Faber A, Duquaine A, Winnick S, Sotherland PR, Dzialowski EM (2016a) Development of endothermy and concomitant increases in cardiac and skeletal muscle mitochondrial respiration in the precocial Pekin Duck (Anas platyrhynchos domestica). J Exp Biol. doi:10.1242/jeb.132282

    PubMed  Google Scholar 

  • Sirsat SKG, Sirsat TS, Price ER, Dzialowski EM (2016b) Post-hatching development of mitochondrial function, organ mass, and metabolic rate in two ectotherms, the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina). Biol Open. doi:10.1242/bio.017160

  • Skulachev VP (1998) Uncoupling: new approaches to an old problem of bioenergetics. BBA-Bioenergetics 1363:100–124

    Article  CAS  PubMed  Google Scholar 

  • Starck JM (1996) Intestinal growth in altricial European Starling (Sturnus vulgaris) and precocial Japanese Quail (Coturnix coturnix japonica). Cells Tissues Organs 156:289–306

    Article  CAS  Google Scholar 

  • Starck JM, Ricklefs RE (1998) Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press, New York

    Google Scholar 

  • Szdzuy K, Mortola JP (2007) Monitoring breathing in avian embryos and hatchlings by the barometric technique. Respir Physiol Neurobiol 159:241–244

    Article  PubMed  Google Scholar 

  • Talbot DA, Hanuise N, Rey B, Rouanet JL, Duchamp C, Brand MD (2003) Superoxide activates a GDP-sensitive proton conductance in skeletal muscle mitochondria from king penguin (Aptenodytes patagonicus). Biochem Biophys Res Commun 312:983–988

    Article  CAS  PubMed  Google Scholar 

  • Talbot DA, Duchamp C, Rey B, Hanuise N, Rouanet JL, Sibille B, Brand MD (2004) Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of King Penguins. J Physiol 558:123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tazawa H, Wakayama H, Turner JS, Paganelli CV (1988) Metabolic compensation for gradual cooling in developing chick embryos. Comp Biochem Physiol 89A:125–129

    Article  Google Scholar 

  • Ueda M, Watanabe K, Sato K, Akiba Y, Toyomizu M (2005) Possible role for avPGC-1α in the control of expression of fiber type, along with avUCP and avANT mRNAs in the skeletal muscles of cold-exposed chickens. FEBS Lett 579:11–17

    Article  CAS  PubMed  Google Scholar 

  • Walczak R, Tontonoz P (2002) PPARadigms and PPARadoxes: expanding roles for PPARγ in the control of lipid metabolism. J Lip Res 43:177–186

    CAS  Google Scholar 

  • Walter I, Seebacher F (2007) Molecular mechanisms underlying the development of endothermy in birds (Gallus gallus): a new role of PGC-1 alpha? Am J Physiol Regul Integr Comp Physiol 293:R2315–R2322

    Article  CAS  PubMed  Google Scholar 

  • Walter I, Seebacher F (2009) Endothermy in birds: underlying molecular mechanisms. J Exp Biol 212:2328–2336

    Article  CAS  PubMed  Google Scholar 

  • Whittow GC, Tazawa H (1991) The early development of thermoregulation in birds. Physiol Zool 64:1371–1390

    Article  Google Scholar 

  • Withers PC (2001) Design, calibration and calculation for flow-through respirometry systems. Aust J Zool 49:445–461

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous referees whose comments and suggestions greatly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah K. Goy Sirsat.

Ethics declarations

Funding

IOS 1146758 from the National Science Foundation to EMD.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirsat, S.K.G., Sirsat, T.S., Crossley, J.L. et al. The 12-day thermoregulatory metamorphosis of Red-winged Blackbirds (Agelaius phoeniceus). J Comp Physiol B 186, 651–663 (2016). https://doi.org/10.1007/s00360-016-0978-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-0978-0

Keywords

Navigation