Skip to main content
Log in

Temperature-dependence of L-type Ca2+ current in ventricular cardiomyocytes of the Alaska blackfish (Dallia pectoralis)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

To lend insight into the overwintering strategy of the Alaska blackfish (Dallia pectoralis), we acclimated fish to 15 or 5 °C and then utilized whole-cell patch clamp to characterize the effects of thermal acclimation and acute temperature change on the density and kinetics of ventricular L-type Ca2+ current (I Ca). Peak I Ca density at 5 °C (−1.1 ± 0.1 pA pF−1) was 1/8th that at 15 °C (−8.8 ± 0.6 pA pF−1). However, alterations of the Ca2+- and voltage-dependent inactivation properties of L-type Ca2+ channels partially compensated against the decrease. The time constant tau (τ) for the kinetics of inactivation of I Ca was ~4.5 times greater at 5 °C than at 15 °C, and the voltage for half-maximal inactivation was shifted from −23.3 ± 1.0 mV at 15 °C to −19.8 ± 1.2 mV at 5 °C. These modifications increase the open probability of the channel and culminate in an approximate doubling of the L-type Ca2+ window current, which contributes to approximately 15 % of the maximal Ca2+ conductance at 5 °C. Consequently, the charge density of I Ca (Q Ca) and the total Ca2+ transferred through the L-type Ca2+ channels (Δ[Ca2+]) were not as severely reduced at 5 °C as compared to peak I Ca density. In combination, the results suggest that while the Alaska blackfish substantially down-regulates I Ca with acclimation to low temperature, there is sufficient compensation in the kinetics of the L-type Ca2+ channel to support the level of cardiac performance required for the fish to remain active throughout the winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aho E, Vornanen M (1999) Contractile properties of atrial and ventricular myocardium of the heart of rainbow trout Oncorhynchus mykiss: effects of thermal acclimation. J Exp Biol 202(19):2663–2677

    PubMed  Google Scholar 

  • Bers DM, Perez-Reyes E (1999) Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovasc Res 42:339–360

    Article  CAS  PubMed  Google Scholar 

  • Brette F, Luxan G, Cros C, Dixey H, Wilson C, Shiels HA (2008) Characterization of isolated ventricular myocytes from adult zebrafish (Danio rerio). Biochem Biophys Res Commun 374(1):143–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cameron JN (1975) Morphometric and flow indicator studies of the teleost heart. Can J Zool 53:691–698

    Article  CAS  PubMed  Google Scholar 

  • Campbell MA, Lopéz JA (2014) Mitochondrial phylogeography of a Beringian relict: the endemic freshwater genus of blackfish Dallia (Esociformes). J Fish Biol 84(2):523–538

    Article  CAS  PubMed  Google Scholar 

  • Costa MJ, Rantin FT (1824) Kalinin AL (2009) Differences in Ca2+-management between the ventricle of two species of neotropical teleosts: the jeju, Hoplerythrinus unitaeniatus (Spix & Agassiz, 1829), and the acara, Geophagus brasiliensis (Quoy & Gaimard. Neotrop Ichthyol 7(3):471–478

    Article  Google Scholar 

  • Costa MJ, Olle CD, Rantin FT, Kalinin AL (2005) Influence of temperature on calcium sensitivity in the ventricular myocardium of the South American lungfish: effects of extracellular calcium and adrenaline. J Therm Biol 30:259–266

    Article  CAS  Google Scholar 

  • Cros C, Salle L, Warren DE, Shiels HA, Brette F (2014) The calcium stored in the sarcoplasmic reticulum acts as a safety mechanism in rainbow trout heart. AJP: regulatory. Integr Comp Physiol 307:R1493–R1501

    Article  CAS  Google Scholar 

  • Galli GLJ, Taylor EW, Shiels HA (2006) Calcium flux in turtle ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 291(6):R1781–R1789

    Article  CAS  PubMed  Google Scholar 

  • Galli GLJ, Warren DE, Shiels HA (2009) Ca2+ cycling in cardiomyocytes from a high-performance reptile, the varanid lizard (Varanus exanthematicus). Am J Physiol Regul Integr Comp Physiol 297(15):R1636–R1644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graham JB, Wegner NC (2010) Breathing air in water and in air: the air-breathing fishes. In: Respiratory physiology of vertebrates: life with and without oxygen. Cambridge University Press, Cambridge, pp 174–221

  • Hardisty MW, Potter IC, Hilliard RW (2011) Physiological adaptations of the living agnathans. Trans R Soc Edinb Earth Sci 80(3–4):241–254

    Google Scholar 

  • Haverinen J, Egginton S, Vornanen M (2014) Electrical excitation of the heart in a basal vertebrate, the European River Lamprey (Lampetra fluviatilis). Physiol Biochem Zool 87(6):817–828

    Article  PubMed  Google Scholar 

  • Haworth TE, Haverinen J, Shiels HA, Vornanen M (2014) Electrical excitability of the heart in a Chondrostei fish, the Siberian sturgeon (Acipenser baerii). Am J Physiol Regul Integr Comp Physiol 307(9):R1157–R1166

    Article  CAS  PubMed  Google Scholar 

  • Hirano Y, Moscucci A, January CT (1992) Direct measurement of L-type Ca2+ window current in heart cells. Circ Res 70(3):445–455

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231(4735):234–241

    Article  CAS  PubMed  Google Scholar 

  • Hove-Madsen L, Tort L (1998) L-type Ca2+ current and excitation-contraction coupling in single atrial myocytes from rainbow trout. Am J Physiol Regul Integr Comp Physiol 275:R2061–R2069

    CAS  Google Scholar 

  • Iversen NK, Lauridsen H, Huong DTT, Van Cong N, Gesser H, Buchanan R, Bayley M, Pedersen M, Wang T (2013) Cardiovascular anatomy and cardiac function in the air-breathing swamp eel (Monopterus albus). Comp Biochem Physiol A Mol Integr Physiol 164(1):171–180

    Article  CAS  PubMed  Google Scholar 

  • Klaiman JM, Fenna AJ, Shiels HA, Macri J, Gillis TE (2011) Cardiac remodeling in fish: strategies to maintain heart function during temperature Change. PLoS ONE 6(9):1–11

    Article  Google Scholar 

  • Lefevre S, Damsgaard C, Pascale DR, Nilsson G, Stecyk JAW (2014) Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis. J Exp Biol 217(24):4387–4398

    Article  PubMed  Google Scholar 

  • Lutz PL, Rosenthal M, Sick TJ (1986) Living without oxygen: turtle brain as a model of anaerobic metabolism. Mol Phys 8(3):411–425

    Google Scholar 

  • MacFarlane SN, Sontheimer H (1997) Electrophysiological changes that accompany reactive gliosis in vitro. J Neurosci 17(19):7316–7329

    CAS  PubMed  Google Scholar 

  • Matikainen N, Vornanen M (1992) Effect of season and temperature acclimation on the function of crucian carp (Carassius carassius) heart. J Exp Biol 167:203–220

    Google Scholar 

  • Maylie J, Morad M (1995) Evaluation of T- and L-type Ca2+ currents in shark ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 269(5):H1695–H1703

    CAS  Google Scholar 

  • McDonald TF, Pelzer S, Trautwein W, Pelzer DJ (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth-muscle cells. Physiol Rev 74(2):365–507

    CAS  PubMed  Google Scholar 

  • McKenzie DJ, HA Campbell, Taylor EW, Micheli M, Rantin FT, Abe AS (2007) The autonomic control and functional significance of the changes in heart rate associated with air breathing in the jeju, Hoplerythrinus unitaeniatus. J Exp Biol 210:4224–4232

    Article  CAS  PubMed  Google Scholar 

  • Mery PF, AbiGerges N, Vandecasteele G, Jurevicius J, Eschenhagen T, Fischmeister R (1997) Muscarinic regulation of the L-type calcium current in isolated cardiac myocytes. Life Sci 60(13–14):1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Morotti S, Grandi E, Summa A, Ginsburg KS, Bers DM (2012) Theoretical study of L-type Ca(2+) current inactivation kinetics during action potential repolarization and early afterdepolarizations. J Physiol 590:4465–4481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ostdiek JL, Nardone RM (1959) Studies on the Alaskan Blackfish Dallia pectoralis I. Habitat, size and stomach analyses. Am Midl Nat 61(1):218–229

    Article  CAS  Google Scholar 

  • Paajanen V, Vornanen M (2004) Regulation of action potential duration under acute heat stress by I(K, ATP) and I(K1) in fish cardiac myocytes. Am J Physiol Regul Integr Comp Physiol 286(2):R405–R415

    Article  CAS  PubMed  Google Scholar 

  • Peterson BZ, DeMaria CD, Adelman JP, Yue DT (1999) Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22:549–558

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF, Flagg W, Hock RJ, Irving L (1953) Studies on the physiology of frozen plants and animals in the Arctic. J Cell Comp Physiol 42:1–56

    Article  CAS  Google Scholar 

  • Shiels HA, Vornanen M, Farrell AP (2000) Temperature-dependence of L-type Ca2+ channel current in atrial myocytes from rainbow trout. J Exp Biol 203(18):2771–2780

    CAS  PubMed  Google Scholar 

  • Shiels HA, Vornanen M, Farrell AP (2003) Acute temperature change modulates the response of I Ca to adrenergic stimulation in fish cardiomyocytes. Physiol Biochem Zool 76(6):816–824

    Article  CAS  PubMed  Google Scholar 

  • Shiels HA, Blank JM, Farrell AP, Block BA (2004) Electrophysiological properties of the L-type Ca(2+) current in cardiomyocytes from bluefin tuna and Pacific mackerel. Am J Physiol Regul Integr Comp Physiol 286:R659–R668

    Article  CAS  PubMed  Google Scholar 

  • Shiels HA, Paajanen V, Vornanen M (2006) Sarcolemmal ion currents and sarcoplasmic reticulum Ca2+ content in ventricular myocytes from the cold stenothermic fish, the burbot (Lota lota). J Exp Biol 209(16):3091–3100

    Article  CAS  PubMed  Google Scholar 

  • Shiels HA, Galli GLJ, Block BA (2014) Cardiac function in an endothermic fish: cellular mechanisms for overcoming acute thermal challenges during diving. Proc Biol Sci 282(1800):20141989

    Article  Google Scholar 

  • Stecyk JAW, Paajanen V, Farrell AP, Vornanen M (2007) Effect of temperature and prolonged anoxia exposure on electrophysiological properties of the turtle (Trachemys scripta) heart. Am J Physiol Regul Integr Comp Physiol 293(1):R421–R437

    Article  CAS  PubMed  Google Scholar 

  • Stecyk JAW, Galli GLJ, Shiels HA, Farrell AP (2008) Cardiac survival in anoxia-tolerant vertebrates: an electrophysiological perspective. Comp Biochem Physiol C Toxicol Pharmacol 148(4):339–354

    Article  PubMed  Google Scholar 

  • Tiitu V, Vornanen M (2002) Morphology and fine structure of the heart of the burbot, a cold stenothermal fish. J Fish Biol 61:106–121

    Article  Google Scholar 

  • Vornanen M (1996a) Contribution of sarcolemmal calcium current to total cellular calcium in postnatally developing rat heart. Cardiovasc Res 32:400–410

    Article  CAS  PubMed  Google Scholar 

  • Vornanen M (1996b) Effect of extracellular calcium on the contractility of warm-and cold-acclimated crucian carp heart. J Comp Physiol B 165(7):507–517

    Article  CAS  Google Scholar 

  • Vornanen M (1997) Sarcolemmal Ca influx through L-type Ca channels in ventricular myocytes of a teleost fish. Am J Physiol 272(5):R1432–R1440

    CAS  PubMed  Google Scholar 

  • Vornanen M (1998) L-type Ca2+ current in fish cardiac myocytes: effects of thermal acclimation and beta-adrenergic stimulation. J Exp Biol 201(4):533–547

    CAS  PubMed  Google Scholar 

  • Vornanen M, Haverinen J (2013) A significant role of sarcoplasmic reticulum in cardiac contraction of a basal vertebrate, the river lamprey (Lampetra fluviatilis). Acta Physiol 207(2):269–279

    Article  CAS  Google Scholar 

  • Vornanen M, Paajanen V (2004) Seasonality of dihydropyridine receptor binding in the heart of an anoxia-tolerant vertebrate, the crucian carp (Carassius carassius L.). Am J Physiol Regul Integr Comp Physiol 287:R1263–R1269

    Article  CAS  PubMed  Google Scholar 

  • Vornanen M, Shiels HA, Farrell AP (2002) Plasticity of excitation–contraction coupling in fish cardiac myocytes. Comp Biochem Physiol A Mol Integr Physiol 132(4):827–846

    Article  PubMed  Google Scholar 

  • Wilber CG, Robinson PF, Hunn JB (1961) Heart size and body size in fish. Anat Rec 140:285–287

    Article  CAS  PubMed  Google Scholar 

  • Young S, Egginton S (2011) Temperature acclimation of gross cardiovascular morphology in common carp (Cyprinus carpio). J Therm Biol 36(7):475–477

    Article  Google Scholar 

  • Zhang P-C, Llach A, Sheng XY, Hove-Madsen L, Tibbits GF (2011) Calcium handling in zebrafish ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 300(1):R56–R66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Graduate Student Research Awards from LGL Limited Environmental Research Associates (to K.L.K.) and an Institutional Development Award (IDeA) from the US National Institute of General Medical Sciences of the National Institutes of Health (Grant Number P20GM103395 to J.A.W.S.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We would like to thank Dr. Matti Vornanen for providing assistance with data analysis calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry L. Kubly.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubly, K.L., Stecyk, J.A.W. Temperature-dependence of L-type Ca2+ current in ventricular cardiomyocytes of the Alaska blackfish (Dallia pectoralis). J Comp Physiol B 185, 845–858 (2015). https://doi.org/10.1007/s00360-015-0931-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0931-7

Keywords

Navigation