Skip to main content
Log in

Proteomics approaches shed new light on hibernation physiology

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The broad phylogenetic distribution and rapid phenotypic transitions of mammalian hibernators imply that hibernation is accomplished by differential expression of common genes. Traditional candidate gene approaches have thus far explained little of the molecular mechanisms underlying hibernation, likely due to (1) incomplete and imprecise sampling of a complex phenotype, and (2) the forming of hypotheses about which genes might be important based on studies of model organisms incapable of such dynamic physiology. Unbiased screening approaches, such as proteomics, offer an alternative means to discover the cellular underpinnings that permit successful hibernation and may reveal previously overlooked, important pathways. Here, we review the findings that have emerged from proteomics studies of hibernation. One striking feature is the stability of the proteome, especially across the extreme physiological shifts of torpor–arousal cycles during hibernation. This has led to subsequent investigations of the role of post-translational protein modifications in altering protein activity without energetically wasteful removal and rebuilding of protein pools. Another unexpected finding is the paucity of universal proteomic adjustments across organ systems in response to the extreme metabolic fluctuations despite the universality of their physiological challenges; rather each organ appears to respond in a unique, tissue-specific manner. Additional research is needed to extend and synthesize these results before it will be possible to address the whole body physiology of hibernation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews MT (2007) Advances in molecular biology of hibernation in mammals. BioEssays 29:431–440

    CAS  PubMed  Google Scholar 

  • Andrews MT, Russeth KP, Drewes LR, Henry PG (2009) Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor. Am J Physiol-Reg 296:R383–R393

    CAS  Google Scholar 

  • Antonov A, Dietmann S, Mewes H (2008) KEGG spider: interpretation of genomics data in the context of the global gene metabolic network. Genom Biol 9:R179

    Google Scholar 

  • Billingham R, Silvers W (1960) A note on the fate of skin autografts and homografts and on the healing of cutaneous wounds in hibernating squirrels. Annal Surg 152:975

    CAS  Google Scholar 

  • Bouma HR, Carey HV, Kroese FGM (2010) Hibernation: the immune system at rest? J Leukoc Biol 88:619–624. doi:10.1189/jlb.0310174

    CAS  PubMed  Google Scholar 

  • Buck MJ, Squire TL, Andrews MT (2002) Coordinate expression of the PDK4 gene: a means of regulating fuel selection in a hibernating mammal. Physiol Genom 8:5–13. doi:10.1152/physiolgenomics.00076.2001

    CAS  Google Scholar 

  • Burlington RF, Therriault DG, Hubbard RW (1969) Lipid changes in isolated brown fat cells from hibernating and aroused thirteen-lined ground squirrels (Citellus tridecemlineatus). Comp Biochem Physiol 29:431–437

    CAS  PubMed  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359. doi:10.1152/physrev.00015.2003

    CAS  PubMed  Google Scholar 

  • Carey HV, Martin SL (1996) Preservation of intestinal gene expression during hibernation. Am J Physiol 271:G804–G813

    CAS  PubMed  Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    CAS  PubMed  Google Scholar 

  • Carey HV et al (2012) Elucidating nature’s solutions to heart, lung, and blood diseases and sleep disorders. Circ Res 110:915–921. doi:10.1161/circresaha.111.255398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chow BA, Donahue SW, Vaughan MR, McConkey B, Vijayan MM (2013) Serum immune-related proteins are differentially expressed during hibernation in the American black bear. PLoS One 8:e66119. doi:10.1371/journal.pone.0066119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung D, Lloyd G, Thomas R, Guglielmo C, Staples J (2011) Mitochondrial respiration and succinate dehydrogenase are suppressed early during entrance into a hibernation bout, but membrane remodeling is only transient. J Comp Physiol B 181:699–711. doi:10.1007/s00360-010-0547-x

    CAS  PubMed  Google Scholar 

  • Chung DJ, Szyszka B, Brown JC, Huner NP, Staples JF (2013) Changes in the mitochondrial phosphoproteome during mammalian hibernation. Physiol Genom 45:389–399. doi:10.1152/physiolgenomics.00171.2012

    CAS  Google Scholar 

  • Collier TS, Muddiman DC (2012) Analytical strategies for the global quantification of intact proteins. Amino Acid 43:1109–1117. doi:10.1007/s00726-012-1285-z

    CAS  Google Scholar 

  • Colugnati DB, Arida RM, Cravo SL, Schoorlemmer GH, de Almeida AC, Cavalheiro EA, Scorza FA (2008) Hibernating mammals in sudden cardiac death in epilepsy: what do they tell us? Med Hypotheses 70:929–932. doi:10.1016/j.mehy.2007.10.005

    PubMed  Google Scholar 

  • Concannon P, Levac K, Rawson R, Tennant B, Bensadoun A (2001) Seasonal changes in serum leptin, food intake, and body weight in photoentrained woodchucks. Am J Physiol-Reg I 281:R951–R959

    CAS  Google Scholar 

  • Dark J (2005) Annual lipid cycles in hibernators: integration of physiology and behavior. Annu Rev Nutr 25:469–497. doi:10.1146/Annurev.Nutr.25.050304.092514

    CAS  PubMed  Google Scholar 

  • Dark J, Kilduff TS, Heller HC, Licht P, Zucker I (1990) Suprachiasmatic nuclei influence hibernation rhythms of golden-mantled ground squirrels. Brain Res 509:111–118

    CAS  PubMed  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Physiology: hibernation in a tropical primate. Nature 429:825–826

    CAS  PubMed  Google Scholar 

  • Dave KR, Prado R, Raval AP, Drew KL, Perez-Pinzon MA (2006) The arctic ground squirrel brain is resistant to injury from cardiac arrest during euthermia. Stroke 37:1261–1265

    PubMed  Google Scholar 

  • Dave KR, Christian SL, Perez-Pinzon MA, Drew KL (2012) Neuroprotection: lessons from hibernators Comparative. Biochem Physiol B 162:1–9

    CAS  Google Scholar 

  • Dawe AR, Spurrier WA, Armour JA (1970) Summer hibernation induced by cryogenically preserved blood “trigger”. Science 168:497–498

    CAS  PubMed  Google Scholar 

  • Drew KL, Toien O, Rivera PM, Smith MA, Perry G, Rice ME (2002) Role of the antioxidant ascorbate in hibernation and warming from hibernation. Comp Biochem Physiol C Toxicol Pharmacol 133:483–492

    CAS  PubMed  Google Scholar 

  • Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB (2007) Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 102:1713–1726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Epperson LE, Martin SL (2011) Proteomic strategies to investigate adaptive processes. In: Methods in Animal Proteomics. Wiley-Blackwell, pp 189–209. doi:10.1002/9780470960660.ch8

  • Epperson LE, Dahl TA, Martin SL (2004) Quantitative analysis of liver protein expression during hibernation in the golden-mantled ground squirrel. Mol Cell Proteomics 3:920–933

    CAS  PubMed  Google Scholar 

  • Epperson E, Rose J, Martin S (2007) Seasonal and stage-specific protein expression in liver of golden-mantled ground squirrel, a large-scale quantitative analysis. Mol Cell Proteomics 6:54-54

    Google Scholar 

  • Epperson L, Rose J, Russell R, Nikrad M, Carey H, Martin S (2010a) Seasonal protein changes support rapid energy production in hibernator brainstem. J Comp Physiol B 180:599–617. doi:10.1007/s00360-009-0422-9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Epperson LE, Rose JC, Carey HV, Martin SL (2010b) Seasonal proteomic changes reveal molecular adaptations to preserve and replenish liver proteins during ground squirrel hibernation. Am J Physiol Reg 298:R329–R340. doi:10.1152/Ajpregu.00416.2009

    CAS  Google Scholar 

  • Evans C et al (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404:1011–1027. doi:10.1007/s00216-012-5918-6

    CAS  PubMed  Google Scholar 

  • Florant GL, Healy JE (2012) The regulation of food intake in mammalian hibernators: a review Journal of comparative physiology B. Biochem Syst Environ Physiol 182:451–467. doi:10.1007/s00360-011-0630-y

    CAS  Google Scholar 

  • Frerichs KU, Kennedy C, Solokoff L, Hallenbeck JM (1994) Local cerebral blood flow during hibernation, a model of natural tolerance to “cerebral ischemia”. J Cereb Blood Flow Metab 14:193–205

    CAS  PubMed  Google Scholar 

  • Geiser F (2007) Yearlong hibernation in a marsupial mammal. Naturwissenschaften 94:941–944. doi:10.1007/s00114-007-0274-7

    CAS  PubMed  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Grabek KR, Karimpour-Fard A, Epperson LE, Hindle AG, Hunter LE, Martin SL (2011) Multistate proteomics analysis reveals novel strategies used by a hibernator to precondition the heart and conserve ATP for winter heterothermy. Physiol Genomics 43:1263–1275. doi:10.1152/physiolgenomics.00125.2011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gururaj A, Barnes CJ, Vadlamudi RK, Kumar R (2004) Regulation of phosphoglucomutase 1 phosphorylation and activity by a signaling kinase. Oncogene 23:8118–8127

    CAS  PubMed  Google Scholar 

  • Hampton M, Andrews MT (2007) A simple molecular mathematical model of mammalian hibernation. J Theor Biol 247:297–302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hampton M, Nelson BT, Andrews MT (2010) Circulation and metabolic rates in a natural hibernator: an integrative physiological model. Am J Physiol-Reg 299:R1478–R1488. doi:10.1152/ajpregu.00273.2010

    CAS  Google Scholar 

  • Heldmaier G, Ortmann S, Kortner G (1993) Energy Requirements of Hibernating Alpine Marmots. In: Carey C, Florant GL, Wunder BA, Horwitz B (eds) Life in the Cold—Ecological, Physiological, and Molecular Mechanisms. Westview Press, Boulder, pp 175–183

    Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141:317–329. doi:10.1016/j.resp.2004.03.014

    PubMed  Google Scholar 

  • Hiebert SM, Thomas EM, Lee TM, Pelz KM, Yellon SM, Zucker I (2000) Photic entrainment of circannual rhythms in golden-mantled ground squirrels: role of the pineal gland. J Biol Rhythms 15:126–134

    CAS  PubMed  Google Scholar 

  • Hindle AG, Martin SL (2013) Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels. PLoS One 8:e71627. doi:10.1371/journal.pone.0071627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hindle AG, Martin SL (2014) Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation. Am J Physiol Endocrinol Metab 306:E284–E299. doi:10.1152/ajpendo.00431.2013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hindle AG, Karimpour-Fard A, Epperson LE, Hunter LE, Martin SL (2011) Skeletal muscle proteomics: carbohydrate metabolism oscillates with seasonal and torpor-arousal physiology of hibernation. Am J Physiol Regul Integr Comp Physiol 301:R1440–R1452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hindle AG, Grabek KR, Epperson LE, Karimpour-Fard A, Martin SL (2014) Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels. Physiol Genomics 46(10):348–361. doi:10.1152/physiolgenomics.00190.2013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hindle AG, Otis JP, Epperson LE, Hornberger TA, Goodman CA, Carey HV, Martin SL (2015) Prioritization of skeletal muscle growth for emergence from hibernation. J Exp Biol 218:276–284. doi:10.1242/jeb.109512

    PubMed  Google Scholar 

  • Hittel DS, Storey KB (2002) Differential expression of mitochondria-encoded genes in a hibernating mammal. J Exp Biol 205:1625–1631

    CAS  PubMed  Google Scholar 

  • Hoffman RA, Hester RJ, Towns C (1965) Effect of light and temperature on the endocrine system of the golden hamster (Mesocricetus auratus Waterhouse). Comp Biochem Physiol 15:525–533. doi:10.1016/0010-406X(65)90152-0

    CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    CAS  Google Scholar 

  • Iaizzo PA, Laske TG, Harlow HJ, McClay CB, Garshelis DL (2012) Wound healing during hibernation by black bears (Ursus americanus) in the wild: elicitation of reduced scar formation. Integr Zool 7:48–60. doi:10.1111/j.1749-4877.2011.00280.x

    PubMed  Google Scholar 

  • Ivakine EA, Cohn RD (2014) Maintaining skeletal muscle mass: lessons learned from hibernation. Exp Physiol 99:632–637. doi:10.1113/expphysiol.2013.074344

    CAS  PubMed  Google Scholar 

  • Jani A, Orlicky DJ, Karimpour-Fard A, Epperson LE, Russell RL, Hunter LE, Martin SL (2012) Kidney proteome changes provide evidence for a dynamic metabolism and regional redistribution of plasma proteins during torpor-arousal cycles of hibernation. Physiol Genom 44:717–727. doi:10.1152/physiolgenomics.00010.2012

    CAS  Google Scholar 

  • Jani A, Martin SL, Jain S, Keys D, Edelstein CL (2013) Renal adaptation during hibernation. Am J Physiol Renal Physiol 305:F1521–F1532. doi:10.1152/ajprenal.00675.2012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karpovich S, Tøien Ø, Buck C, Barnes B (2009) Energetics of arousal episodes in hibernating arctic ground squirrels. J Comp Physiol B 179:691–700. doi:10.1007/s00360-009-0350-8

    PubMed  Google Scholar 

  • Kim M-S et al (2014) A draft map of the human proteome Nature 509:575–581. doi:10.1038/nature13302

    CAS  PubMed  Google Scholar 

  • Kirschner MW, Williams RC, Weingarten M, Gerhart JC (1974) Microtubules from mammalian brain: some properties of their depolymerization products and a proposed mechanism of assembly and disassembly. Proc Nat Acad Sci USA 71:1159–1163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kondo N, Sekijima T, Kondo J, Takamatsu N, Tohya K, Ohtsu T (2006) Circannual control of hibernation by HP complex in the brain. Cell 125:161–172. doi:10.1016/j.cell.2006.03.017

    CAS  PubMed  Google Scholar 

  • Kortner G, Geiser F (2009) The key to winter survival: daily torpor in a small arid-zone marsupial. Naturwissenschaften 96:525–530. doi:10.1007/s00114-008-0492-7

    PubMed  Google Scholar 

  • Körtner G, Geiser F (2000) The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiol Int 17:103–128. doi:10.1081/CBI-100101036

    PubMed  Google Scholar 

  • Kortner G, Pavey CR, Geiser F (2008) Thermal biology, torpor, and activity in free-living mulgaras in arid zone Australia during the winter reproductive season. Physiol Biochem Zoology PBZ 81:442–451. doi:10.1086/589545

    PubMed  Google Scholar 

  • Kudej RK, Vatner SF (2003) Nitric oxide-dependent vasodilation maintains blood flow in true hibernating myocardium. J Mol Cell Cardiol 35:931–935

    CAS  PubMed  Google Scholar 

  • Kurtz CC, Lindell SL, Mangino MJ, Carey HV (2006) Hibernation confers resistance to intestinal ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 291:G895–G901. doi:10.1152/ajpgi.00155.2006

    CAS  PubMed  Google Scholar 

  • Lane JE, Kruuk LE, Charmantier A, Murie JO, Dobson FS (2012) Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489:554–557. doi:10.1038/nature11335

    CAS  PubMed  Google Scholar 

  • Lee K, Park JY, Yoo W, Gwag T, Lee JW, Byun MW, Choi I (2008) Overcoming muscle atrophy in a hibernating mammal despite prolonged disuse in dormancy: proteomic and molecular assessment. J Cell Biochem 104:642–656

    CAS  PubMed  Google Scholar 

  • Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL, Pan C (2012) Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res 11:1582–1590. doi:10.1021/pr200748h

    CAS  PubMed  Google Scholar 

  • Li H et al (2013) Proteomic mechanisms of cardioprotection during mammalian hibernation in woodchucks, Marmota monax. J Proteome Res 12:4221–4229. doi:10.1021/pr400580f

    CAS  PubMed  Google Scholar 

  • Lindell SL, Klahn SL, Piazza TM, Mangino MJ, Torrealba JR, Southard JH, Carey HV (2005) Natural resistance to liver cold ischemia-reperfusion injury associated with the hibernation phenotype. Am J Physiol Gastrointest Liver Physiol 288:G473–G480

    CAS  PubMed  Google Scholar 

  • Lovegrove BG, Genin F (2008) Torpor and hibernation in a basal placental mammal, the Lesser Hedgehog Tenrec Echinops telfairi. J Comp Physiol B Biochem Syst Environ Physiol 178:691–698. doi:10.1007/s00360-008-0257-9

    Google Scholar 

  • Lyman CP, Chatfield PO (1950) Mechanisms of arousal in the hibernating hamster. J Exp Zool 114:491–515. doi:10.1002/jez.1401140305

    Google Scholar 

  • Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and Torpor in Mammals and Birds. Physiological Ecology. Academic Press, New York

    Google Scholar 

  • Ma YL et al (2005) Absence of cellular stress in brain after hypoxia induced by arousal from hibernation in Arctic ground squirrels. Am J Physiol Reg I 289:R1297–R1306

    CAS  Google Scholar 

  • Martin SL (2008) Mammalian hibernation: a naturally reversible model for insulin resistance in man? Diab Vasc Dis Res 5:76–81. doi:10.3132/dvdr.2008.013

    PubMed  Google Scholar 

  • Martin SL, Epperson LE, Rose JC, Kurtz CC, Ane C, Carey HV (2008) Proteomic analysis of the winter-protected phenotype of hibernating ground squirrel intestine. Am J Physiol-Reg I 295:R316–R328

    CAS  Google Scholar 

  • McGee-Lawrence ME, Carey HV, Donahue SW (2008) Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength. Am J Physiol Regulat Integr Comp Physiol 295:R1999–R2014

    CAS  Google Scholar 

  • McMullen DC, Hallenbeck JM (2010) Regulation of Akt during torpor in the hibernating ground squirrel, Ictidomys tridecemlineatus. J Comp Physiol B Biochem Syst Environ Physiol 180:927–934. doi:10.1007/s00360-010-0468-8

    CAS  Google Scholar 

  • Nagaraj N et al (2012) System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top orbitrap. Mol Cell Proteomics 11(M111):013722. doi:10.1074/mcp.M111.013722

    PubMed  Google Scholar 

  • Nahnsen S, Bielow C, Reinert K, Kohlbacher O (2013) Tools for Label-free Peptide Quantification. Mol Cell Proteomics 12:549–556. doi:10.1074/mcp.R112.025163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson RA (1980) Protein and fat metabolism in hibernating bears. Fed Proc 39:2955–2958

    CAS  PubMed  Google Scholar 

  • Orr AL, Lohse LA, Drew KL, Hermes-Lima M (2009) Physiological oxidative stress after arousal from hibernation in Arctic ground squirrel. Comp Biochem Physiol A Mol Integr Physiol 153:213–221. doi:10.1016/j.cbpa.2009.02.016

    PubMed Central  PubMed  Google Scholar 

  • Ortmann S, Heldmaier G (2000) Regulation of body temperature and energy requirements of hibernating alpine marmots (Marmota marmota). Am J Physiol-Reg I 278:R698–R704

    CAS  Google Scholar 

  • Pan YH, Zhang Y, Cui J, Liu Y, McAllan BM, Liao CC, Zhang S (2013) Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats. PLoS One 8:e62039. doi:10.1371/journal.pone.0062039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pengelley ET, Fisher KC (1961) Rhythmical arousal from hibernation in the golden-mantled ground squirrel, Citellus lateralis tescorum. Can J Zool 39:105–120. doi:10.1139/z61-013

    Google Scholar 

  • Pengelley ET, Asmundson SJ, Barnes B, Aloia RC (1976) Relationship of light intensity and photoperiod to circannual rhythmicity in the hibernating ground squirrel, Citellus lateralis. Comp Biochem Physiol A Comp Physiol 53:273–277

    CAS  PubMed  Google Scholar 

  • Popov VI, Bocharova LS, Bragin AG (1992) Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience 48:45–51. doi:10.1016/0306-4522(92)90336-Z

    CAS  PubMed  Google Scholar 

  • Riedesel ML, Steffen JM (1980) Protein metabolism and urea recycling in rodent hibernators. Fed Proc 39:2959–2963

    CAS  PubMed  Google Scholar 

  • Rose JC, Epperson LE, Carey HV, Martin SL (2011) Seasonal liver protein differences in a hibernator revealed by quantitative proteomics using whole animal isotopic labeling. Comp Biochem Physiol Part D Genom Proteomics 6:163–170. doi:10.1016/j.cbd.2011.02.003

    Google Scholar 

  • Rouble AN, Hefler J, Mamady H, Storey KB, Tessier SN (2013) Anti-apoptotic signaling as a cytoprotective mechanism in mammalian hibernation. Peer J 1:e29. doi:10.7717/peerj.29

    PubMed Central  PubMed  Google Scholar 

  • Ruf T, Geiser F (2014) Daily torpor and hibernation in birds and mammals. Biol Rev. doi:10.1111/brv.12137

    PubMed  Google Scholar 

  • Russell RL, O’Neill PH, Epperson LE, Martin SL (2010) Extensive use of torpor in 13-lined ground squirrels in the fall prior to cold exposure. J Comp Physiol B 180:1165–1172. doi:10.1007/s00360-010-0484-8

    PubMed Central  PubMed  Google Scholar 

  • Russeth KP, Higgins L, Andrews MT (2006) Identification of proteins from non-model organisms using mass spectrometry: application to a hibernating mammal. J Proteome Res 5:829–839

    CAS  PubMed  Google Scholar 

  • Schwartz C, Hampton M, Andrews MT (2013) Seasonal and regional differences in gene expression in the brain of a hibernating mammal. PLoS One 8:e58427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serkova NJ, Rose JC, Epperson LE, Carey HV, Martin SL (2007) Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR. Physiol Genomics 31:15–24

    CAS  PubMed  Google Scholar 

  • Shao C et al (2010) Shotgun proteomics analysis of hibernating arctic ground squirrels. Mol Cell Proteomics 9:313–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sidell BD (1977) Turnover of cytochrome C in skeletal muscle of green sunfish (Lepomis cyanellus, R.) during thermal acclimation. J Exp Zool 199:233–250. doi:10.1002/jez.1401990208

    CAS  PubMed  Google Scholar 

  • Srere HK, Wang LC, Martin SL (1992) Central role for differential gene expression in mammalian hibernation. Proc Natl Acad Sci USA 89:7119–7123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Staples JF, Brown JC (2008) Mitochondrial metabolism in hibernation and daily torpor: a review. J Comp Physiol B Biochem Syst Environ Physiol 178:811–827. doi:10.1007/s00360-008-0282-8

    CAS  Google Scholar 

  • Storey KB (1987) Regulation of liver metabolism by enzyme phosphorylation during mammalian hibernation. J Biol Chem 262:1670–1673

    CAS  PubMed  Google Scholar 

  • Suurna MV et al (2006) Cofilin mediates ATP depletion-induced endothelial cell actin alterations. Am J Physiol Renal Physiol 290:F1398–F1407. doi:10.1152/ajprenal.00194.2005

    CAS  PubMed  Google Scholar 

  • Tøien Ø, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909. doi:10.1126/science.1199435

    PubMed  Google Scholar 

  • van Breukelen F, Martin SL (2001) Translational initiation is uncoupled from elongation at 18C during mammalian hibernation. Am J Physiol-Reg I 281:R1374–R1379

    Google Scholar 

  • van Breukelen F, Martin SL (2002a) Molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J Appl Physiol 92:2640–2647

    PubMed  Google Scholar 

  • van Breukelen F, Martin SL (2002b) Reversible depression of transcription during hibernation. J Comp Physiol Biochem Syst Environ Physiol 172:355–361

    Google Scholar 

  • Velickovska V, Lloyd B, Qureshi S, Breukelen F (2005) Proteolysis is depressed during torpor in hibernators at the level of the 20S core protease. J Comp Physiol B 175:329–335. doi:10.1007/s00360-005-0489-x

    CAS  PubMed  Google Scholar 

  • Vergnes L, Chin R, Young SG, Reue K (2011) Heart-type fatty acid-binding protein is essential for efficient brown adipose tissue fatty acid oxidation and cold tolerance. J Biol Chem 286:380–390. doi:10.1074/jbc.M110.184754

    CAS  PubMed Central  PubMed  Google Scholar 

  • von der Ohe CG, Darian-Smith C, Garner CC, Heller HC (2006) Ubiquitous and temperature-dependent neural plasticity in hibernators. J Neurosci 26:10590–10598

    PubMed  Google Scholar 

  • Wang LCH (1978) Energetics and field aspects of mammalian torpor: the Richardsons ground squirrel. In: Wang LCH, Hudson JW (eds) Strategies in Cold: Natural Torpidity and Thermogenesis. Academic Press, London, pp 109–145

    Google Scholar 

  • Wang SQ, Zhou ZQ (1999) Medical significance of cardiovascular function in hibernating mammals. Clin Exp Pharmacol Physiol 26:837–839

    CAS  PubMed  Google Scholar 

  • Wilz M, Heldmaier G (2000) Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis. J Comp Physiol B Biochem Syst Environ Physiol 170:511–521

    CAS  Google Scholar 

  • Yamashita H, Wang Z, Wang Y, Segawa M, Kusudo T, Kontani Y (2008) Induction of fatty acid-binding protein 3 in brown adipose tissue correlates with increased demand for adaptive thermogenesis in rodents. Biochem Biophys Res Commun 377:632–635. doi:10.1016/j.bbrc.2008.10.041

    CAS  PubMed  Google Scholar 

  • Yan J, Barnes BM, Kohl F, Marr TG (2008) Modulation of gene expression in hibernating arctic ground squirrels. Physiol Genomics 32:170–181

    CAS  PubMed  Google Scholar 

  • Zeeberg BR et al (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4:R28

    PubMed Central  PubMed  Google Scholar 

  • Zervanos SM, Maher CR, Waldvogel JA, Florant GL (2010) Latitudinal differences in the hibernation characteristics of woodchucks (Marmota monax). Physiol Biochem Zool PBZ 83:135–141. doi:10.1086/648736

    PubMed  Google Scholar 

  • Zhang Y, Pan Y-H, Yin Q, Yang T, Dong D, Liao C-C, Zhang S (2014) Critical roles of mitochondria in brain activities of torpid Myotis ricketti bats revealed by a proteomic approach. J Proteomics 105:266–284. doi:10.1016/j.jprot.2014.01.006

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra L. Martin.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabek, K.R., Martin, S.L. & Hindle, A.G. Proteomics approaches shed new light on hibernation physiology. J Comp Physiol B 185, 607–627 (2015). https://doi.org/10.1007/s00360-015-0905-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0905-9

Keywords

Navigation