Skip to main content
Log in

Digesta retention patterns of solute and different-sized particles in camelids compared with ruminants and other foregut fermenters

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The mean retention times (MRT) of solute or particles in the gastrointestinal tract and the forestomach (FS) are crucial determinants of digestive physiology in herbivores. Besides ruminants, camelids are the only herbivores that have evolved rumination as an obligatory physiological process consisting of repeated mastication of large food particles, which requires a particle sorting mechanism in the FS. Differences between camelids and ruminants have hardly been investigated so far. In this study we measured MRTs of solute and differently sized particles (2, 10, and 20 mm) and the ratio of large-to-small particle MRT, i.e. the selectivity factors (SF10/2mm, SF20/2mm, SF20/10mm), in three camelid species: alpacas (Vicugna pacos), llamas (Llama glama), and Bactrian camels (Camelus bactrianus). The camelid data were compared with literature data from ruminants and non-ruminant foregut fermenters (NRFF). Camelids and ruminants both had higher SF10/2mmFS than NRFF, suggesting convergence in the function of the FS sorting mechanism in contrast to NRFF, in which such a sorting mechanism is absent. The SF20/10mmFS did not differ between ruminants and camelids, indicating that there is a particle size threshold of about 1 cm in both suborders above which particle retention is not increased. Camelids did not differ from ruminants in MRT2mmFS, MRTsoluteFS, and the ratio MRT2mmFS/MRTsoluteFS, but they were more similar to ‘cattle-’ than to ‘moose-type’ ruminants. Camelids had higher SF10/2mmFS and higher SF20/2mmFS than ruminants, indicating a potentially slower particle sorting in camelids than in ruminants, with larger particles being retained longer in relation to small particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AOAC (1995) Official methods of analysis of AOAC International. Association of Official Analytical Chemists, Arlington VA

    Google Scholar 

  • Barker S, Brown GD, Calaby JH (1963) Food regurgitation in the macropodidae. Aust J Sci 25:430–432

    Google Scholar 

  • Bärmann EV (2014) The evolution of body size, horn shape and social behaviour in crown Antilopini—an ancestral character state analysis. Zitteliana B 32:185–196

    Google Scholar 

  • Bauchop T, Martucci RW (1968) Ruminant-like digestion of the langur monkey. Science 161:698–700

    Article  CAS  PubMed  Google Scholar 

  • Baumont R, Deswysen AG (1991) Mélange et propulsion du contenu du réticulo-rumen. Repr Nutr Dev 31:335–359

    Article  CAS  Google Scholar 

  • Blaxter KL, Graham NM, Wainman FW (1956) Some observations on the digestibility of food by sheep, and on related problems. Br J Nutr 10:69–91

    Article  CAS  PubMed  Google Scholar 

  • Bruining M, Bosch MW (1992) Ruminal passage rate as affected by CrNDF particle size. Anim Feed Sci Technol 37:193–200

    Article  Google Scholar 

  • Cahill LW, McBride BW (1995) Effect of level of intake on digestion, rate of passage and chewing dynamics in hay-fed Bactrian camels. Proc Nutr Adv Group 1:3–35

    Google Scholar 

  • Clauss M, Lechner-Doll M (2001) Differences in selective reticulo-ruminal particle retention as a key factor in ruminant diversification. Oecologia 129:321–327

    Article  Google Scholar 

  • Clauss M, Rössner GE (2014) Old world ruminant morphophysiology, life history, and fossil record: exploring key innovations of a diversification sequence. Ann Zool Fenn 51:80–94

    Article  Google Scholar 

  • Clauss M, Schwarm A, Ortmann S, Alber D, Flach EJ, Kühne R, Hummel J, Streich WJ, Hofer H (2004) Intake, ingesta retention, particle size distribution and digestibility in the hippopotamidae. Comp Biochem Physiol A 139:449–459

    Article  CAS  Google Scholar 

  • Clauss M, Hummel J, Streich WJ (2006) The dissociation of the fluid and particle phase in the forestomach as a physiological characteristic of large grazing ruminants: an evaluation of available, comparable ruminant passage data. Eur J Wildl Res 52:88–98

    Article  Google Scholar 

  • Clauss M, Fritz J, Bayer D, Hummel J, Streich WJ, Südekum K-H, Hatt J-M (2009a) Physical characteristics of rumen contents in two small ruminants of different feeding type, the mouflon (Ovis ammon musimon) and the roe deer (Capreolus capreolus). Zoology 112:195–205

    Article  PubMed  Google Scholar 

  • Clauss M, Fritz J, Bayer D, Nygren K, Hammer S, Hatt J-M, Südekum K-H, Hummel J (2009b) Physical characteristics of rumen contents in four large ruminants of different feeding type, the addax (Addax nasomaculatus), bison (Bison bison), red deer (Cervus elaphus) and moose (Alces alces). Comp Biochem Physiol A 152:398–406

    Article  Google Scholar 

  • Clauss M, Nunn C, Fritz J, Hummel J (2009c) Evidence for a tradeoff between retention time and chewing efficiency in large mammalian herbivores. Comp Biochem Physiol A 154:376–382

    Article  Google Scholar 

  • Clauss M, Hume ID, Hummel J (2010) Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 4:979–992

    Article  CAS  PubMed  Google Scholar 

  • Clauss M, Lunt N, Ortmann S, Plowman A, Codron D, Hummel J (2011) Fluid and particle passage in three duiker species. Eur J Wildl Res 57:143–148

    Article  Google Scholar 

  • Clauss M, Schiele K, Ortmann S, Fritz J, Codron D, Hummel J, Kienzle E (2014) The effect of very low food intake on digestive physiology and forage digestibility in horses. J Anim Physiol Anim Nutr 98:107–118

    Article  CAS  Google Scholar 

  • Codron D, Clauss M (2010) Rumen physiology constrains diet niche: linking digestive physiology and food selection across wild ruminant species. Can J Zool 88:1129–1138

    Article  Google Scholar 

  • Darlis NA, Liang JB, Ho YW (2012) Effects of diets of differing fiber contents on digestibility, passage rate of digesta and heat production in lesser mouse deer (Tragulus javanicus). Mamm Biol 77:385–390

    Google Scholar 

  • Development Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dittmann MT, Hummel J, Runge U, Galeffi C, Kreuzer M, Clauss M (2014a) Characterising an artiodactyl family inhabiting arid habitats by its metabolism: low metabolism and maintenance requirements in camelids. J Arid Environ 107:41–48

    Article  Google Scholar 

  • Dittmann MT, Runge U, Lang RA, Moser D, Galeffi C, Kreuzer M, Clauss M (2014b) Methane emission by camelids. PLoS ONE 9:e94363

    Article  PubMed Central  PubMed  Google Scholar 

  • Dittmann MT, Hummel J, Hammer S, Arif A, Hebel C, Müller DHW, Fritz J, Steuer P, Schwarm A, Kreuzer M, Clauss M (2015) Digesta retention in gazelles in comparison to other ruminants: evidence for taxon-specific rumen fluid throughput to adjust digesta washing to the natural diet. Comp Biochem Physiol A 185:58–68

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Frei S, Ortmann S, Reutlinger C, Kreuzer M, Hatt J-M, Clauss M (2015) Comparative digesta retention patterns in ratites. Auk Ornithol Adv 132:119–131

    Google Scholar 

  • Fritz J, Hummel J, Kienzle E, Arnold C, Nunn C, Clauss M (2009) Comparative chewing efficiency in mammalian herbivores. Oikos 118:1623–1632

    Article  Google Scholar 

  • Gordon JG (1968) Rumination and its significance. Wrld Rev Nutr Diet 9:251–273

    CAS  Google Scholar 

  • Grovum WL, Williams VJ (1973) Rate of passage of digesta in sheep: 4. Passage of marker through the alimentary tract and the biological relevance of rate-constants derived from the changes in concentration of marker in faeces. Br J Nutr 30:313–329

    Article  CAS  PubMed  Google Scholar 

  • Hebel C, Ortmann S, Hammer S, Hammer C, Fritz J, Hummel J, Clauss M (2011) Solute and particle retention in the digestive tract of the Phillip’s dikdik (Madoqua saltiana phillipsi), a very small browsing ruminant: biological and methodological implications. Comp Biochem Physiol A 159:284–290

    Article  Google Scholar 

  • Heller R, Gregory PC, von Engelhardt W (1984) Pattern of motility and flow of digesta in the forestomach of the llama (Lama guanacoe f. glama). J Comp Physiol B 154:529–533

    Article  Google Scholar 

  • Heller R, Cercasov V, von Engelhardt W (1986a) Retention of fluid and particles in the digestive tract of the llama (Lama guanacoe f. glama). Comp Biochem Physiol A 83:687–691

    Article  CAS  PubMed  Google Scholar 

  • Heller R, Lechner M, von Engelhardt W (1986b) Forestomach motility in the camel (Camelus dromedarius). Comp Biochem Physiol A 84:285–288

    Article  CAS  PubMed  Google Scholar 

  • Heller R, Lechner M, Weyreter H, von Engelhardt W (1986c) Forestomach fluid volume and retention time of fluid and particles in the gastrointestinal tract of the camel (Camelus dromedarius). J Vet Med A 33:396–399

    Article  CAS  Google Scholar 

  • Hendrichs H (1965) Vergleichende Untersuchung des Wiederkauverhaltens. Biol Zentrbl 84:681–751

    Google Scholar 

  • Hinderer S, von Engelhardt W (1975) Urea metabolism in the llama. Comp Biochem Physiol A 52:619–622

    Article  CAS  PubMed  Google Scholar 

  • Hintz HF, Schryver HF, Halbert M (1973) A note on the comparsion of digestion by new world camels, sheep and ponies. Anim Prod 16:303–305

    Article  Google Scholar 

  • Hofmann RR, Streich WJ, Fickel J, Hummel J, Clauss M (2008) Convergent evolution in feeding types: salivary gland mass differences in wild ruminant species. J Morphol 269:240–257

    Article  PubMed  Google Scholar 

  • Hummel J, Clauss M, Zimmermann W, Johanson K, Norgaard C, Pfeffer E (2005) Fluid and particle retention in captive okapi (Okapia johnstoni). Comp Biochem Physiol A 140:436–444

    Article  Google Scholar 

  • Hummel J, Steuer P, Südekum K-H, Hammer S, Hammer C, Streich WJ, Clauss M (2008) Fluid and particle retention in the digestive tract of the addax antelope (Addax nasomaculatus)—adaptations of a grazing desert ruminant. Comp Biochem Physiol A 149:142–149

    Article  Google Scholar 

  • Hummel J, Hammer S, Hammer C, Ruf J, Lechenne M, Clauss M (2015) Solute and particle retention in a small grazing antelope, the blackbuck (Antilope cervicapra). Comp Biochem Physiol A 182:22–26

    Article  CAS  Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic Press, London

    Google Scholar 

  • Iqbal A, Khan BB (2001) Feeding behaviour of camel, Review. Pakistan J Agric Sci 38:58–63

    Google Scholar 

  • Janis CM, Gordon IJ, Illius AW (1994) Modelling equid/ruminant competition in the fossil record. Hist Biol 8:15–29

    Article  Google Scholar 

  • Kaske M, Groth A (1997) Changes in factors affecting the rate of digesta passage through pregnancy and lactation in sheep fed on hay. Repr Nutr Dev 37:573–588

    Article  CAS  Google Scholar 

  • Langer P (1988) The mammalian herbivore stomach. Gustav Fischer, Stuttgart

    Google Scholar 

  • Lauper M, Lechner I, Barboza P, Collins W, Hummel J, Codron D, Clauss M (2013) Rumination of different-sized particles in muskoxen (Ovibos moschatus) and moose (Alces alces) on grass and browse diets, and implications for rumination in different ruminant feeding types. Mamm Biol 78:142–152

    Google Scholar 

  • Lechner I, Barboza P, Collins W, Fritz J, Günther D, Hattendorf B, Hummel J, Südekum K-H, Clauss M (2010) Differential passage of fluids and different-sized particles in fistulated oxen (Bos primigenius f. taurus), muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces): rumen particle size discrimination is independent from contents stratification. Comp Biochem Physiol A 155:211–222

    Article  Google Scholar 

  • Lechner-Doll M, von Engelhardt W (1989) Particle size and passage from the forestomach in camels compared to cattle and sheep fed a similar diet. J Anim Physiol Anim Nutr 61:120–128

    Article  Google Scholar 

  • Lechner-Doll M, Rutagwenda T, Schwartz HJ, Schultka W, von Engelhardt W (1990) Seasonal changes of ingesta mean retention time and forestomach fluid volume in indigenous camels, cattle, sheep and goats grazing in a thornbush savanna pasture in Kenya. J Agric Sci 115:409–420

    Article  Google Scholar 

  • Lechner-Doll M, Kaske M, von Engelhardt W (1991) Factors affecting the mean retention time of particles in the forestomach of ruminants and camelids. In: Tsuda T, Sasaki Y, Kawashima R (eds) Physiological aspects of digestion and metabolism in ruminants. Academic Press, San Diego, pp 455–482

    Chapter  Google Scholar 

  • Lechner-Doll M, von Engelhardt W, Abbas HM, Mousa L, Luciano L, Reale E (1995) Particularities in forestomach anatomy, physiology and biochemistry of camelids compared to ruminants. In: Tisserand JL (ed) Elevage et alimentation du dromadaire–Camel production and nutrition Options méditerranéennes, Serie B. Etudes et Recherches Nr. 13 CIHEAM, Paris, pp 19–32

  • Lentle R, Hemar Y, Hall C (2006) Viscoelastic behaviour aids extrusion from and reabsorption of the liquid phase into the digesta plug: creep rheometry of hindgut digesta in the common brushtail possum Trichosurus vulpecula. J Comp Physiol B 176:469–475

    Article  PubMed  Google Scholar 

  • Levey D, Martínez del Rio C (1999) Test, rejection and reformulation of a chemical reactor-based model of gut function in a fruit-eating bird. Physiol Biochem Zool 72:369–383

    Article  CAS  PubMed  Google Scholar 

  • Lirette A, Milligan LP (1989) A quantitative model of reticulo-rumen particle degradation and passage. Br J Nutr 62:465–479

    Article  CAS  PubMed  Google Scholar 

  • Logan M (2001) Evidence for the occurence of rumination-like behaviour, or merycism, in koalas (Phascolarctos cinereus). J Zool 255:83–87

    Article  Google Scholar 

  • Logan M (2003) Effect of tooth wear on the rumination-like behavior, or merycism, of free-ranging koalas (Phascolarctos cinereus). J Mammal 84:897–902

    Article  Google Scholar 

  • Lord RD (1994) A descriptive account of capybara behavior. Stud Neotrop Fauna Environ 29:11–22

    Article  Google Scholar 

  • Mambrini M, Peyraud JL (1997) Retention time of feed particles and liquids in the stomachs and intestines of dairy cows. Direct measurement and calculation based on fecal collection. Repr Nutr Dev 37:427–442

    Article  CAS  Google Scholar 

  • Matsuda I, Murai T, Clauss M, Yamada T, Tuuga A, Bernard H, Higashi S (2011) Regurgitation and remastication in the foregut-fermenting proboscis monkey (Nasalis larvatus). Biol Lett 7:786–789

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsuda I, Tuuga A, Hashimoto C, Bernard H, Yamagiwa J, Fritz J, Tsubokawa K, Yayota M, Murai T, Iwata Y, Clauss M (2014) Faecal particle size in free-ranging primates supports ‘rumination’ strategy in the proboscis monkey (Nasalis larvatus). Oecologia 174:1127–1137

    Article  PubMed  Google Scholar 

  • Meyer K, Hummel J, Clauss M (2010) The relationship between forage cell wall content and voluntary food intake in mammalian herbivores. Mammal Rev 40:221–245

    Google Scholar 

  • Moir RJ, Somers M, Sharman G, Waring H (1954) Ruminant-like digestion in a marsupial. Nature 173:269–270

    Article  CAS  PubMed  Google Scholar 

  • Moir RJ, Somers M, Waring H (1956) Studies on marsupial nutrition. I. Ruminant-like digestion in a herbivorous marsupial. Aust J Biol Sci 9:293–304

    CAS  Google Scholar 

  • Mollison BC (1960) Food regurgitation in Bennett’s wallaby and the scrub wallaby. CSIRO Wildl Res 5:87–88

    Article  Google Scholar 

  • Müller DWH, Caton J, Codron D, Schwarm A, Lentle R, Streich WJ, Hummel J, Clauss M (2011) Phylogenetic constraints on digesta separation: variation in fluid throughput in the digestive tract in mammalian herbivores. Comp Biochem Physiol A 160:207–220

    Article  Google Scholar 

  • Müller DWH, Codron D, Meloro C, Munn A, Schwarm A, Hummel J, Clauss M (2013) Assessing the Jarman-Bell Principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores. Comp Biochem Physiol A 164:129–140

    Article  Google Scholar 

  • Schwarm A, Ortmann S, Wolf C, Streich WJ, Clauss M (2008) Excretion patterns of fluids and particle passage markers of different size in banteng (Bos javanicus) and pygmy hippopotamus (Hexaprotodon liberiensis): two functionally different foregut fermenters. Comp Biochem Physiol A 150:32–39

    Article  Google Scholar 

  • Schwarm A, Ortmann S, Wolf C, Clauss M (2009a) No distinct difference in the excretion of large particles of varying size in a wild ruminant, the banteng (Bos javanicus). Eur J Wildl Res 55:531–533

    Article  Google Scholar 

  • Schwarm A, Ortmann S, Wolf C, Streich WJ, Clauss M (2009b) More efficient mastication allows increasing intake without compromising digestibility or necessitating a larger gut: comparative feeding trials in banteng (Bos javanicus) and pygmy hippopotamus (Hexaprotodon liberiensis). Comp Biochem Physiol A 152:504–512

    Article  Google Scholar 

  • Schwarm A, Ortmann S, Wolf C, Streich WJ, Clauss M (2009c) Passage marker excretion in red kangaroo (Macropus rufus), collared peccary (Pecari tajacu) and colobine monkeys (Colobus angolensis, C. polykomos, Trachypithecus johnii). J Exp Zool A 311:647–661

    Article  Google Scholar 

  • Schwarm A, Ortmann S, Fritz J, Rietschel W, Flach EJ, Clauss M (2013) No distinct stratification of ingesta particles and no distinct moisture gradient in the forestomach of nonruminants: the wallaby, peccary, hippopotamus, and sloth. Mamm Biol 78:412–421

    Google Scholar 

  • Silanikove N (1994) The struggle to maintain hydration and osmoregulation in animals experiencing severe dehydration and rapid rehydration: the story of ruminants. Exp Physiol 79:281–300

    Article  CAS  PubMed  Google Scholar 

  • Sponheimer M, Robinson T, Roeder B, Hammer J, Ayliffe L, Passey B, Cerling T, Dearing D, Ehleringer J (2003) Digestion and passage rates of grass hay by llamas, alpacas, goats, rabbits and horses. Small Rum Res 48:149–154

    Article  Google Scholar 

  • Steuer P, Südekum K-H, Müller DWH, Kaandorp J, Clauss M, Hummel J (2013) Fibre digestibility in large herbivores as related to digestion type and body mass - an in vitro approach. Comp Biochem Physiol A 164:319–326

    Article  CAS  Google Scholar 

  • Sutherland TM (1988) Particle separation in the forestomach of sheep. In: Dobson A, Dobson MJ (eds) Aspects of digestive physiology in ruminants. Cornell University Press, Ithaca, pp 43–73

    Google Scholar 

  • Thielemans MF, Francois E, Bodart C, Thewis A (1978) Mesure du transit gastrointestinal chez le porc a l’aide des radiolanthanides. Comparaison avec le mouton. Ann Biol Anim Biochim Biophys 18:237–247

    Article  Google Scholar 

  • Udén P, Colucci PE, Van Soest PJ (1980) Investigation of chromium, cerium and cobalt as markers in digesta. Rate of passage studies. J Sci Food Agric 31:625–632

    Article  PubMed  Google Scholar 

  • Vallenas A, Cummings JF, Munnell JF (1971) A gross study of the compartmentalized stomach of two New-World camelids, the llama and guanaco. J Morphol 134:399–424

    Article  CAS  PubMed  Google Scholar 

  • Van Weyenberg S, Sales J, Janssens GPJ (2006) Passage rate of digesta through the equine gastrointestinal tract: a review. Livestock Sci 99:3–12

    Article  Google Scholar 

  • von Engelhardt W, Schneider W (1977) Energy and nitrogen metabolism in the llama. Anim Res Dev 5:68–72

    Google Scholar 

  • von Engelhardt W, Haarmeyer P, Kaske M, Lechner-Doll M (2006a) Chewing activities and oesophageal motility during feed intake, rumination and eructuation in camels. J Comp Physiol B 176:117–124

    Article  Google Scholar 

  • von Engelhardt W, Haarmeyer P, Lechner-Doll M (2006b) Feed intake, forestomach fluid volume, dilution rate and mean retention of fluid in the forestomach during water deprivation and rehydration in camels (Camelus sp.). Comp Biochem Physiol A 143:504–507

    Article  Google Scholar 

  • Warner ACI (1981) Rate of passage through the gut of mammals and birds. Nutr Abstr Rev B 51:789–820

    Google Scholar 

Download references

Acknowledgments

We thank Jörg Wick, Andreas Thalmann and the animal keeper team of Zurich Zoo and the entire team of the Kamelhof Olmerswil for their support during animal management. We are also grateful to Catharina Vendl and Walter Salzburger for their help during the sampling period, Simon Ineichen for sample preparation, and Heidrun Barleben, Carmen Kunz, Muna Merghani and Elisabeth Wenk for sample analysis. This study was part of project 310030_135252/1 funded by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Clauss.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dittmann, M.T., Runge, U., Ortmann, S. et al. Digesta retention patterns of solute and different-sized particles in camelids compared with ruminants and other foregut fermenters. J Comp Physiol B 185, 559–573 (2015). https://doi.org/10.1007/s00360-015-0904-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0904-x

Keyword

Navigation