Skip to main content
Log in

Metabolic response in liver and Brockmann bodies of rainbow trout to inhibition of lipolysis; possible involvement of the hypothalamus–pituitary–interrenal (HPI) axis

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We previously demonstrated in rainbow trout that the decrease in circulating levels of fatty acid (FA) induced by treating fish with SDZ WAG 994 (SDZ) induced a counter-regulatory response in which the activation of the hypothalamus–pituitary–interrenal (HPI, equivalent to mammalian hypothalamus–pituitary–adrenal) axis was likely involved. This activation, probably not related to the control of food intake through FA sensor systems but to the modulation of lipolysis in peripheral tissues, liver and Brockmann bodies (BB, the main site of pancreatic endocrine cells in fish), would target the restoration of FA levels in plasma. To assess this hypothesis, we lowered circulating FA levels by treating fish with SDZ alone, or SDZ in the presence of metyrapone (an inhibitor of cortisol synthesis). In liver, the changes observed were not compatible with a direct FA-sensing response but with a stress response, which allows us to suggest that the detection of a FA decrease in the hypothalamus elicits a counter-regulatory response in liver, resulting in an activation of lipolysis to restore FA levels in plasma. The activation of these metabolic changes in liver could be attributable to the activation of the HPI axis and/or to the action of sympathetic pathways. In contrast, in BB, changes in circulating FA levels induce changes in several parameters compatible with the function of FA-sensing systems informing about the decrease in circulating FA levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez MJ, Díez M, López-Bote C, Gallego M, Bautista JM (2000) Short-term modulation of lipogenesis by macronutrients in rainbow trout (Oncorhynchus mykiss) hepatocytes. Br J Nutr 84:619–628

    CAS  PubMed  Google Scholar 

  • Barma P, Dey D, Basu D, Roy SS, Bhattacharya S (2006) Nutritionally induced insulin resistance in an Indian perch: a possible model for type 2 diabetes. Curr Sci 90:188–194

    CAS  Google Scholar 

  • Bernier NJ (2006) The corticotropin-releasing factor system as a mediator of the appetite-suppressing effects of stress in fish. Gen Comp Endocrinol 146:45–55

    Article  CAS  PubMed  Google Scholar 

  • Bernier NJ, Peter RE (2001) Appetite-suppressing effects of urotensin I and corticotropin-releasing hormone in Goldfish (Carassius auratus). Neuroendocrinology 73:248–260

    Article  CAS  PubMed  Google Scholar 

  • Blouet C, Schwartz GJ (2010) Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 209:1–12

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (1959) The innervation of the gut of the brown trout Salmo trutta. Q J Microsc Sci 100:199–220

    Google Scholar 

  • Caspi L, Wang PYT, Lam TKT (2007) A balance of lipid-sensing mechanisms in the brain and liver. Cell Metab 6:99–104

    Article  CAS  PubMed  Google Scholar 

  • Conde-Sieira M, Alvarez R, López-Patiño MA, Míguez JM, Flik G, Soengas JL (2013) ACTH-stimulated cortisol release from head kidney of rainbow trout is modulated by glucose concentration. J Exp Biol 216:554–567

    Article  CAS  PubMed  Google Scholar 

  • Cox BF, Perrone MH, Welzel GE, Greenland BD, Colussi DJ, Merkel LA (1997) Cardiovascular and metabolic effects of adenosine A1-receptor agonists in streptozotocin-treated rats. J Cardiovasc Pharmacol 29:417–426

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Garcia L, Minghetti M, Navarro I, Tocher DR (2009) Molecular cloning, tissue expression and regulation of liver X receptor (LXR) transcription factors of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B 153:81–88

    Article  CAS  PubMed  Google Scholar 

  • Diano S, Horvath TL (2012) Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends Mol Med 18:52–58

    Article  CAS  PubMed  Google Scholar 

  • Dindia L, Faught E, Leonenko Z, Thomas R, Vijayan MM (2013) Rapid cortisol signaling in response to acute stress involves changes in plasma membrane order in rainbow trout liver. Am J Physiol Endocrinol Metab 304:E1157–E1166

    Article  CAS  PubMed  Google Scholar 

  • Ditlecadet D, Driedzic WR (2012) Glycerol-3-phosphatase and not lipid recycling is the primary pathway in the accumulation of high concentrations of glycerol in rainbow smelt (Osmerus mordax). Am J Physiol Regul Integr Comp Physiol 304:R304–R312

    Article  PubMed  Google Scholar 

  • Ducasse-Cabanot S, Zambonino-Infante J, Richard N, Medale F, Corraze G, Mambrini M, Robin J, Cahu C, Kaushik S, Panserat S (2007) Reduced lipid intake leads to changes in digestive enzymes in the intestine but has minor effects on key enzymes of hepatic intermediary metabolism in rainbow trout (Oncorhynchus mykiss). Animal 1:1272–1282

    Article  CAS  PubMed  Google Scholar 

  • Fabbri E, Capuzzo A, Moon TW (1998) The role of circulating catecholamines in the regulation of fish metabolism: an overview. Comp Biochem Physiol C 120:177–192

    CAS  PubMed  Google Scholar 

  • Figueiredo-Silva AC, Kaushik S, Terrier F, Schrama JW, Médale F, Geurden I (2012) Link between lipid metabolism and voluntary food intake in rainbow trout fed coconut oil rich in medium-chain TAG. Br J Nutr 107:1714–1725

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keppler D, Decker K (1974) Glycogen determination with amyloglucosidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1127–1131

    Google Scholar 

  • Kolditz C, Borthaire M, Richard N, Corraze G, Panserat S, Vachot C, Lefevre F, Médale F (2008) Liver and muscle metabolic changes induced by dietary energy content and genetic selection in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 294:R1154–R1164

    Article  CAS  PubMed  Google Scholar 

  • Lam TKT (2010) Neuronal regulation of homeostasis by nutrient sensing. Nature Med 16:392–395

    Article  CAS  PubMed  Google Scholar 

  • Lansard M, Panserat S, Seiliez I, Polakof S, Plagnes-Juan E, Geurden I, Médale F, Kaushik S, Corraze G (2009) Hepatic protein kinase B (Akt)-target of rapamycin (TOR)-signalling pathways and intermediary metabolism in rainbow trout (Oncorhynchus mykiss) are not significantly affected by feeding plant-based diets. Br J Nutr 102:1564–1573

    Article  CAS  PubMed  Google Scholar 

  • Le Foll C, Irani BG, Magnan C, Dunn-Meynell AA, Levin BE (2009) Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol 297:R655–R664

    Article  PubMed Central  PubMed  Google Scholar 

  • Librán-Pérez M, Polakof S, López-Patiño MA, Míguez JM, Soengas JL (2012) Evidence of a metabolic fatty acid sensing system in the hypothalamus and Brockmann bodies of rainbow trout: implications in food intake regulation. Am J Physiol Regul Integr Comp Physiol 302:R1340–R1350

    Article  PubMed  Google Scholar 

  • Librán-Pérez M, Figueiredo-Silva AC, Panserat S, Geurden I, Míguez JM, Polakof S, Soengas JL (2013a) Response of hepatic lipid and glucose metabolism to a mixture or single fatty acids: possible presence of fatty acid-sensing mechanisms. Comp Biochem Physiol A 164:241–248

    Article  Google Scholar 

  • Librán-Pérez M, López-Patiño MA, Míguez JM, Soengas JL (2013b) Oleic acid and octanoic acid sensing capacity in rainbow trout Oncorhynchus mykiss is direct in hypothalamus and Brockmann bodies. PLoS ONE 8:e59507

    Article  PubMed Central  PubMed  Google Scholar 

  • Librán-Pérez M, López-Patiño MA, Míguez JM, Soengas JL (2013c) In vitro response of putative fatty acid-sensing systems in rainbow trout liver to increased levels of oleate or octanoate. Comp Biochem Physiol A 165:288–294

    Article  Google Scholar 

  • Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL (2014a) Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits food intake in rainbow trout. Physiol Behav 129:272–279

    Article  PubMed  Google Scholar 

  • Librán-Pérez M, Velasco C, López-Patiño MA, Míguez JM, Soengas JL (2014b) Counter-regulatory response to a fall in circulating fatty acid levels in rainbow trout. Involvement of the hypothalamus–pituitary–interrenal axis. PLoS ONE 9:e113291

    Article  PubMed Central  PubMed  Google Scholar 

  • Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL (2015) Effects of intracerebroventricular treatment with oleate or octanoate on fatty acid metabolism in Brockmann bodies and liver of rainbow trout. Aquac Nutr. doi:10.1111/anu.12158

    Google Scholar 

  • López-Patiño MA, Hernández-Pérez J, Gesto M, Librán-Pérez M, Míguez JM, Soengas JL (2014) Short-term time course of liver metabolic response to acute handling stress in rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol A 168:40–49

    Article  Google Scholar 

  • MacDonald MJ, Dobrzyn A, Ntambi J, Stoker SW (2008) The role of rapid lipogenesis in insulin secretion: insulin secretagogues acutely alter lipid composition of INS-1 832/13 cells. Arch Biochem Biophys 470:153–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez-Rubio L, Wadsworth S, González Vecino JL, Bell JG, Tocher DR (2013) Effect of dietary digestible energy content on expression of genes of lipid metabolism and LC-PUFA biosynthesis in liver of Atlantic salmon (Salmo salar L.). Aquaculture 384–387:94–103

    Article  Google Scholar 

  • Migrenne S, Cruciani-Guglielmacci C, Kang L, Wang R, Rouch C, Lefèvre A-L, Ktorza A, Routh VH, Levin BE, Magnan C (2006) Fatty acid signaling in the hypothalamus and the neural control of insulin secretion. Diabetes 55:139–144

    Article  Google Scholar 

  • Milligan CL (2003) A regulatory role for cortisol in muscle glycogen metabolism in rainbow trout Oncorhynchus mykiss Walbaum. J Exp Biol 206:3167–3173

    Article  CAS  PubMed  Google Scholar 

  • Morales AE, García-Rejón L, de la Higuera M (1990) Influence of handling and/or anaesthesia on stress response in rainbow trout. Effects on liver primary metabolism. Comp Biochem Physiol A 95:87–93

    Article  Google Scholar 

  • Morgan K, Obici S, Rossetti L (2004) Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J Biol Chem 279:31139–31148

    Article  CAS  PubMed  Google Scholar 

  • Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L (2002) Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51:271–275

    Article  CAS  PubMed  Google Scholar 

  • Oh YT, Oh K-S, Kang I, Youn JH (2012) A fall in plasma free fatty acid (FFA) level activates the hypothalamic-pituitary-adrenal axis independent of plasma glucose: evidence for brain sensing of circulating FFA. Endocrinology 153:3587–3592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oh YT, Kim J, Kang I, Youn JH (2014) Regulation of hypothalamic-pituitary-adrenal axis by circulating free fatty acids in male wistar rats: role of individual free fatty acids. Endocrinology 155:923–931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panserat S, Médale F, Blin C, Brèque J, Vachot C, Plagnes-Juan E, Gomes E, Krishnamoorthy R, Kaushik S (2000) Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilhead seabream, and common carp. Am J Physiol Regul Integr Comp Physiol 278:R1164–R1170

    CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polakof S, Míguez JM, Moon TW, Soengas JL (2007a) Evidence for the presence of a glucosensor in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout. Am J Physiol Regul Integr Comp Physiol 292:R1657–R1666

    Article  CAS  PubMed  Google Scholar 

  • Polakof S, Míguez JM, Soengas JL (2007b) In vitro evidences for glucosensing capacity and mechanisms in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout. Am J Physiol Regul Integr Comp Physiol 293:R1410–R1420

    Article  CAS  PubMed  Google Scholar 

  • Polakof S, Míguez JM, Soengas JL (2008a) Changes in food intake and glucosensing function of hypothalamus and hindbrain in rainbow trout subjected to hyperglycemic or hypoglycemic conditions. J Comp Physiol A 194:829–839

    Article  CAS  Google Scholar 

  • Polakof S, Panserat S, Plagnes-Juan E, Soengas JL (2008b) Altered dietary carbohydrates significantly affect gene expression of the major glucosensing components in Brockmannn bodies and hypothalamus of rainbow trout. Am J Physiol Regul Integr Comp Physiol 295:R1077–R1088

    Article  CAS  PubMed  Google Scholar 

  • Polakof S, Míguez JM, Soengas JL (2008c) Dietary carbohydrates induce changes in glucosensing capacity and food intake in rainbow trout. Am J Physiol Regul Integr Comp Physiol 295:R478–R489

    Article  CAS  PubMed  Google Scholar 

  • Polakof S, Médale F, Skiba-Cassy S, Corraze G, Panserat S (2010) Molecular regulation of lipid metabolism in liver and muscle of rainbow trout subjected to acute and chronic insulin treatments. Domest Anim Endocrinol 39:26–33

    Article  CAS  PubMed  Google Scholar 

  • Polakof S, Médale F, Larroquet L, Vachot C, Corraze G, Panserat S (2011) Insulin stimulates lipogenesis and attenuates beta-oxidation in white adipose tissue of fed rainbow trout. Lipids 46:189–199

    Article  CAS  PubMed  Google Scholar 

  • Reid SD, Bernier NJ, Perry SF (1998) The adrenergic stress response in fish: control of catecholamine storage and release. Comp Biochem Physiol C 120:1–27

    CAS  PubMed  Google Scholar 

  • Reubush KJ, Heath AG (1996) Metabolic responses to acute handling by fingerling inland and anadromous striped bass. J Fish Biol 49:830–841

    Article  Google Scholar 

  • Schwalme K, Mckay WC (1991) Mechanisms that elevate the glucose concentration of muscle and liver in yellow perch (Perca flavescens Mitchill) after exercise-handing stress. Can J Zool 69:456–461

    Article  CAS  Google Scholar 

  • Seth H, Axelsson M (2010) Sympathetic, parasympathetic and enteric regulation of the gastrointestinal vasculature in rainbow trout (Oncorhynchus mykiss) under normal and postprandial conditions. J Exp Biol 213:3118–3126

    Article  PubMed  Google Scholar 

  • Soengas JL (2014) Contribution of glucose- and fatty acid sensing systems to the regulation of food intake in fish. A review. Gen Comp Endocrinol 205:36–48

    Article  CAS  PubMed  Google Scholar 

  • Tripathi G, Verma P (2003) Pathway-specific response to cortisol in the metabolism of catfish. Comp Biochem Physiol B 136:463–471

    Article  CAS  PubMed  Google Scholar 

  • Vijayan MM, Moon TW (1992) Acute handling stress alters hepatic glycogen metabolism in food-deprived rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 49:2260–2266

    Article  CAS  Google Scholar 

  • Vijayan MM, Ballantyne JS, Leatherland JF (1990) High stocking density alters the energy metabolism of brook charr, Salvelinus fontinalis. Aquaculture 88:371–381

    Article  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    CAS  PubMed  Google Scholar 

  • Zhou D, Yuen P, Chu D, Thon V, McConnell S, Brown S, Tsang A, Pena M, Russell A, Cheng J-F, Nadzan AM, Barbosa MS, Dyck JRB, Lopaschuk GD, Yang G (2011) Expression, purification, and characterization of human malonyl-CoA decarboxylase. Prot Express Purif 34:261–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant from Ministerio de Economía y Competitividad and European Fund for Regional Development (AGL2013-46448-C3-1-R and FEDER). M.L.-P. and C.O.-R were recipient of predoctoral fellowships (BES-2011-043394 and BES-2014-068040, respectively) from Ministerio de Economía y Competitividad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Soengas.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Librán-Pérez, M., Velasco, C., Otero-Rodiño, C. et al. Metabolic response in liver and Brockmann bodies of rainbow trout to inhibition of lipolysis; possible involvement of the hypothalamus–pituitary–interrenal (HPI) axis. J Comp Physiol B 185, 413–423 (2015). https://doi.org/10.1007/s00360-015-0894-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0894-8

Keywords

Navigation