Skip to main content
Log in

Tubular localization and expressional dynamics of aquaporins in the kidney of seawater-challenged Atlantic salmon

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Most vertebrate nephrons possess an inherited ability to secrete fluid in normal or pathophysiological states. We hypothesized that renal aquaporin expression and localization are functionally regulated in response to seawater and during smoltification in Atlantic salmon and thus reflect a shift in renal function from filtration towards secretion. We localized aquaporins (Aqp) in Atlantic salmon renal tubular segments by immunohistochemistry and monitored their expressional dynamics using RT-PCR and immunoblotting. Three aquaporins: Aqpa1aa, Aqp1ab and Aqp8b and two aquaglyceroporins Aqp3a and Aqp10b were localized in the kidney of salmon. The staining for all aquaporins was most abundant in the proximal kidney tubules and there was no clear effect of salinity or developmental stage on localization pattern. Aqp1aa and Aqp3a were abundant apically but extended throughout the epithelial cells. Aqp10b was expressed apically and along the lateral membrane. Aqp8b was mainly basolateral and Aqp1ab was located in sub-apical intracellular compartments. mRNAs of aqp8b and aqp10b were higher in FW smolts compared to FW parr, whereas the opposite was true for aqp1aa. Aqp mRNA levels changed in response to both SW and sham transfer. Protein levels, however, were stable for most paralogs. In conclusion, aquaporins are abundant in salmon proximal renal tubules and may participate in water secretion and thus urine modification as suggested for other vertebrates. Further studies should seek to couple functional measurements of single nephrons to expression and localization of Aqps in the salmonid kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akabane G, Ogushi Y, Hasegawa T, Suzuki M, Tanaka S (2007) Gene cloning and expression of an aquaporin (AQP-h3BL) in the basolateral membrane of water permeable epithelial cells in osmoregulatory organs of the tree frog. Am J Physiol Regul Integr Comp Physiol 292:R2340–R2351

    Article  CAS  PubMed  Google Scholar 

  • Althoff T, Hentschel H, Luig J, Schütz H, Kasch M, Kinne RKH (2007) Na+-d-glucose cotransporter in the kidney of Leucoraja erinacea: molecular identification and intrarenal distribution. Am J Physiol Regul Integr Comp Physiol 292:R2391–R2399

    Article  CAS  PubMed  Google Scholar 

  • Amer S, Brown JA (1995) Glomerular actions of arginine vasotocin in the in situ perfused trout kidney. Am J Physiol Regul Integr Comp Physiol 269:R775–R780

    CAS  Google Scholar 

  • Anderson BG, Loewen RD (1975) Renal morphology of freshwater trout. Am J Anat 143:93–114

    Article  CAS  PubMed  Google Scholar 

  • Babonis LS, Miller SN, Evans DH (2011) Renal responses to salinity change in snakes with and without salt glands. J Exp Biol 214:2140–2156

    Article  CAS  PubMed  Google Scholar 

  • Beyenbach K (2004) Kidneys sans glomeruli. Am J Physiol Renal Physiol 286:F811–F827

    Article  CAS  PubMed  Google Scholar 

  • Brown JA, Jackson BA, Oliver JA, Henderson IW (1978) Single nephron filtration rates (SNGFR) in the trout, Salmo gairdneri. Pflügers Arch 377:101–108

    Article  CAS  PubMed  Google Scholar 

  • Cerdà J, Finn RN (2010) Piscine aquaporins: an overview of recent advances. J Exp Zool 313A:1–28

    Article  Google Scholar 

  • Cerdà J, Zapater C, Chauvigné F, Finn RN (2013) Water homeostasis in the fish oocyte: new insights into the role and molecular regulation of a teleost-specific aquaporin. Fish Physiol Biochem 39:19–27

    Article  PubMed  Google Scholar 

  • Cliff WH, Beyenbach KW (1992) Secretory renal proximal tubules in seawater- and freshwater-adapted killifish. Am J Physiol Renal Physiol 262:F108–F116

    CAS  Google Scholar 

  • Cutler CP, Martinez AS, Cramb G (2007) The role of aquaporin 3 in teleost fish. Comp Biochem Physiol 148A:82–91

    Article  CAS  Google Scholar 

  • Dantzler WH (2005) Challenges and intriguing problems in comparative renal physiology. J Exp Biol 208:587–594

    Article  CAS  PubMed  Google Scholar 

  • Elkjær ML, Nejsum LN, Grecz V, Kwon TH, Jensen UB, Frøkiær J, Nielsen S (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis and airways. Am J Physiol Renal Physiol 281:F1047–F1057

    PubMed  Google Scholar 

  • Engelund MB, Madsen SS (2011) The role of aquaporins in the kidney of euryhaline teleosts. Front Physiol 2:51. doi:10.3389/fphys.2011.00051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engelund MB, Chauvigné F, Christensen BM, Finn RN, Cerdà J, Madsen SS (2013) Differential expression and novel permeability properties of three aquaporin 8 paralogs from seawater-challenged Atlantic salmon smolts. J Exp Biol 216:3873–3885

    Article  CAS  PubMed  Google Scholar 

  • García F, Kierbel A, Larocca MC, Gradilone SA, Splinter P, LaRusso NF, Marinelli RA (2001) The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. J Biol Chem 276(15):12147–12152

  • Giffard-Mena I, Boulo V, Aujoulat F, Fowden H, Castille R, Charmantier G, Cramb G (2007) Aquaporin molecular characterization in the sea-bass (Dicentrarchus labrax): the effect of salinity on AQP1 and AQP3 expression. Comp Biochem Physiol A148:430–444

    Article  Google Scholar 

  • Grantham JJ, Wallace DP (2002) Return of the secretory kidney. Am J Physiol Renal Physiol 282:F2–F9

    Google Scholar 

  • Hickman CP Jr, Trump BF (1969) The kidney. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 1. Academic Press, New York, pp 91–239

  • Kato A, Muro T, Kimura Y, Li S, Islam Z, Ogoshi M, Doi H, Hirose S (2011) Differential expression of Na+-Cl cotransporter and Na+-K+-Cl cotransporter 2 in the distal nephrons of euryhaline and seawater pufferfishes. Am J Physiol Regul Integr Comp Physiol 300:R284–R297

    Article  CAS  PubMed  Google Scholar 

  • Katoh F, Cozzi RRF, Marshall WS, Goss GG (2008) Distinct Na+/K+/2Cl cotransporter localization in kidneys and gills of two euryhaline species, rainbow trout and killifish. Cell Tissue Research 334:265–281

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Madsen SS, Olesen, JH, Bedal K, Engelund MB, Velasco-Santamaría YM, Tipsmark CK (2011) Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine. Front Physiol 2:56. doi:10.3389/fphys.2011.00056

  • Martinez AS, Cutler CP, Wilson GD, Phillips C, Hazon N, Cramb G (2005) Cloning and expression of three aquaporin homologues from the European eel (Anguilla anguilla): effects of seawater acclimation and cortisol treatment on renal expression. Biol Cell 97:615–627

    Article  CAS  PubMed  Google Scholar 

  • Nakada T, Zandi-Nejad K, Kurita Y, Kudo H, Broumand V, Kwon CY, Mercado A, Mount DB, Hirose S (2005) Roles of Slc13a1 and Slc26a1 sulfate transporters of eel kidney in sulphate homeostasis and osmoregulation in freshwater. Am J Physiol Regul Integr Comp Physiol 289:R575–R585

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Frøkiær J, Marples D, Kwon T, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    CAS  PubMed  Google Scholar 

  • Nishimura H, Yang Y (2013) Aquaporins in avian kidneys: function and perspectives. Am J Physiol Regul Integr Comp Physiol 305:R1201–R1214

    Article  CAS  PubMed  Google Scholar 

  • Olsvik PÅ, Lie KK, Jordal AO, Nilsen TO, Hordvik I (2005) Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Bio 6:21

    Article  Google Scholar 

  • Pandey RN, Yaganti S, Coffey S, Frisbie J, Alnajjar K, Goldstein D (2010) Expression and immunolocalization of aquaporins HC-1, -2, and -3 in Cope’s gray treefrog, Hyla chrysoscelis. Comp Biochem Physiol A157:86–94

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pisitkun T, Hoffert JD, Saeed F, Knepper MA (2012) NHLBI-AbDesigner: an online tool for design of peptide-directed antibodies. Am J Physiol Cell Physiol 302:C154–C164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  CAS  PubMed  Google Scholar 

  • Santos CR, Estêvão MD, Fuentes J, Cardoso JC, Fabra M, Passos AL, Detmers FJ, Deen PM, Cerdà J, Power DM (2004) Isolation of a novel aquaglyceroporin from a marine teleost (Sparus auratus): function and tissue distribution. J Exp Biol 207:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen B, Renfro JL (1975) Kidney function of the American eel Anguilla rostrata. Am J Physiol 228(2):420–431

    CAS  PubMed  Google Scholar 

  • Schnermann J, Huang Y, Mizel D (2013) Fluid reabsorption in proximal convoluted tubules of mice with gene deletions of claudin-2 and/or aquaporin1. Am J Physiol Renal Physiol 305:F1352–F1364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teranishi K, Kaneko T (2010) Spatial, cellular, and intracellular localization of Na+/K+-ATPase in the sterically disposed renal tubules of Japanese Eel. J Histochem Cytochem 58(8):707–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tingaud-Sequeira A, Calusinska M, Finn RN, Chauvigne F, Lozano J, Cerdà J (2010) The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BMC Evol Biol 10:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Tipsmark CK, Madsen SS, Seidelin M, Christensen AS, Cutler CP, Cramb G (2002) Dynamics of a Na+, K+, 2Cl cotransporter and Na+, K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and Atlantic Salmon (Salmo salar). J Exp Zool 293:106–118

    Article  CAS  PubMed  Google Scholar 

  • Tipsmark CK, Sørensen KJ, Madsen SS (2010) Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation. J Exp Biol 213:368–379

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Takei Y (2011) Molecular physiology and functional morphology of SO4 2− excretion by the kidney of seawater-adapted eels. J Exp Biol 214:1783–1790

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Kaneko T, Aida K (2005) Aquaporin-3 expressed in the basolateral membrane of gill chloride cells in Mozambique tilapia Oreochromis mossambicus adapted to freshwater and seawater. J Exp Biol 208:2673–2682

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 7(9):1598–1608

Download references

Acknowledgments

The staff at the Danish Centre for Wild Salmon is thanked for their help with animal husbandry and seawater challenge experiments. Annette Duus is thanked for valuable technical assistance. The study was supported by a grant from the Danish Natural Research council to Steffen S. Madsen (09-070689).

Conflict of interest

The authors declare that there are no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Buch Engelund.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelund, M.B., Madsen, S.S. Tubular localization and expressional dynamics of aquaporins in the kidney of seawater-challenged Atlantic salmon. J Comp Physiol B 185, 207–223 (2015). https://doi.org/10.1007/s00360-014-0878-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0878-0

Keywords

Navigation