Skip to main content
Log in

Electrocardiogram, heart movement and heart rate in the awake gecko (Hemidactylus mabouia)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The electrocardiogram (ECG) is the simplest and most effective non-invasive method to assess the electrical activity of the heart and to obtain information on the heart rate (HR) and rhythm. Because information on the HR of very small reptiles (body mass <10 g) is still scarce in the literature, in the present work we describe a procedure for recording the ECG in non-anesthetized geckos (Hemidactylus mabouia, Moreau de Jonnès, 1818) under different conditions, namely manual restraint (MR), spontaneous tonic immobility (TI), and in the non-restrained condition (NR). In the gecko ECG, the P, QRS and T waves were clearly distinguishable. The HR was 2.83 ± 0.02 Hz under MR, which was significantly greater (p < 0.001) than the HR under the TI (1.65 ± 0.09 Hz) and NR (1.60 ± 0.10 Hz) conditions. Spontaneously beating isolated gecko hearts contracted at 0.84 ± 0.03 Hz. The in vitro beating rate was affected in a concentration-dependent fashion by adrenoceptor stimulation with noradrenaline, as well as by the muscarinic cholinergic agonist carbachol, which produced significant positive and negative chronotropic effects, respectively (p < 0.001). To our knowledge, this is the first report on the ECG morphology and HR values in geckos, particularly under TI. The methodology and instrumentation developed here are useful for non-invasive in vivo physiological and pharmacological studies in small reptiles without the need of physical restraint or anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BR:

Beating rate

CCh:

Carbachol

dV m /dt :

Time derivative of Vm

ECG:

Electrocardiogram

HM:

Heart motion

HR:

Heart rate

MR:

Manual restraint

NA:

Noradrenaline

NR:

Non-restrained condition

s.e.m.:

Standard error of the mean

TI:

Spontaneous tonic immobility

Vm:

Transmembrane potential

References

  • Bassani JWM, Yuan W, Bers DM (1995) Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol Cell Physiol 268:C1313–C1329

    CAS  Google Scholar 

  • Clark TD, Farrell AF (2011) Effects of body mass on physiological and anatomical parameters of mature salmon: evidence against a universal heart rate scaling. J Exp Biol 214:887–893

    Article  CAS  PubMed  Google Scholar 

  • Close B, Banister K, Baumans V, Bernoth E, Bromage N, Bunyan J, Erhardt W, Flecknell P, Gregory N, Hackbarth H, Morton D, Warwick C (1997) Recommendations for euthanasia of experimental animals: part 2. Lab Anim 31:1–32

    Article  CAS  PubMed  Google Scholar 

  • Davie PS, Franklin CE, Grigg GC (1993) Blood pressure and heart rate during tonic immobility in the black tipped reef shark, Carcharhinus melanoptera. Fish Physiol Biochem 12:95–100

    Article  CAS  PubMed  Google Scholar 

  • Davies DC, Martínez-Garcia F, Lanuza E, Novejarque A (2002) Striato-amygdaloid transition area lesions reduce the duration of tonic immobility in the lizard Podarcis hispanica. Brain Res Bull 57:537–541

    Article  CAS  PubMed  Google Scholar 

  • Donatti AF, Leite-Panissi CR (2011) Activation of corticotropin-releasing factor receptors from the basolateral or central amygdala increases the tonic immobility response in guinea pigs: an innate fear behavior. Behav Brain Res 225:23–30

    Article  CAS  PubMed  Google Scholar 

  • Farrell AP (1991) From hagfish to tuna: a perspective on cardiac function in fish. Physiol Zool 64:1137–1164

    Google Scholar 

  • Galli GLJ, Gesser H, Taylor EW, Shiels HA, Wang T (2006a) The role of the sarcoplasmic reticulum in the generation of high heart rates and blood pressures in reptiles. J Exp Biol 209:1956–1963

    Article  PubMed  Google Scholar 

  • Galli GLJ, Taylor EW, Shiels HA (2006b) Calcium flux in turtle ventricular myocytes. Am J Physiol Reg Integr Comp Physiol 291:R1781–R1789

    Article  CAS  Google Scholar 

  • Gentle MJ, Jones RB, Woolley SC (1989) Physiological changes during tonic immobility in Gallus gallus var. domesticus. Physiol Behav 46:843–847

    Article  CAS  PubMed  Google Scholar 

  • Giannico AT, Lima L, Lange RR, Froes TR, Wang T (2014) Proven cardiac changes during death-feigning (tonic immobility) in rabbits (Oryctolagus cuniculus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200:305–310

    Article  PubMed  Google Scholar 

  • Hagensen MK, Abe AS, Falk E, Wang T (2008) Physiological importance of the coronary arterial blood supply to the rattlesnake heart. J Exp Biol 211:3588–3593

    Article  PubMed  Google Scholar 

  • Jensen B, Boukens BJD, Postma AV, Gunst QD, van den Hoff MJB, Moorman AF, Wang T, Christoffels VM (2012) Identifying the evolutionary building blocks of the cardiac conduction. PLoS One 7:e44231. doi:10.1371/journal.pone.0044231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen B, Moorman AF, Wang T (2014) Structure and function of the hearts of lizards and snakes. Biol Rev Camb Philos Soc 89:302–336

    Article  PubMed  Google Scholar 

  • Kaese S, Verheule S (2012) Cardiac electrophysiology in mice: a matter of size. Front Physiol 3:2–19

    Article  Google Scholar 

  • Kik MJL, Mitchel MA (2005) Reptile cardiology: a review of anatomy and physiology, diagnostic approach, and clinical disease. Semin Avian Exot Pet 14:52–60

    Article  Google Scholar 

  • Lillywhite HB, Zippel KC, Farrell AP (1999) Resting and maximal heart rates in ectothermic vertebrates. Comp Biochem Physiol 124A:369–382

    Article  CAS  Google Scholar 

  • Lindstedt SL, Schaeffer PJ (2002) Use of allometry in predicting anatomical and physiological parameters of mammals. Lab Anim 36:1–19

    Article  CAS  PubMed  Google Scholar 

  • Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New York 512 p

    Book  Google Scholar 

  • McSpadden LC, Kirkton RD, Bursac N (2009) Electrotonic loading of anisotropic cardiac monolayers by unexcitable cells depends on connexin type and expression level. Am J Physiol Cell Physiol 297:C339–C351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ostadal B, Ostadalova I, Dhalla NS (1999) Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 79:635–669

    CAS  PubMed  Google Scholar 

  • Solc D (2007) The heart and heart conducting system in the kingdom of animals: a comparative approach to its evolution. Exp Clin Cardiol 12:113–118

    PubMed Central  PubMed  Google Scholar 

  • Taylor EW, Leite CAC, Skovgaard N (2010) Autonomic control of cardiorespiratory interactions in fish, amphibians and reptiles. Br J Med Biol Res 43:600–610

    Article  CAS  Google Scholar 

  • Taylor EW, Leite CA, Sartori MR, Wang T, Abe AS, Crossley DA 2nd (2014) The phylogeny and ontogeny of autonomic control of the heart and cardiorespiratory interactions in vertebrates. J Exp Biol 217:690–703

    Article  PubMed  Google Scholar 

  • Wang T, Taylor EW, Andrade D, Abe AS (2001) Autonomic control of heart rate during forced activity and digestion in the snake Boa constrictor. J Exp Biol 204:3553–3560

    CAS  PubMed  Google Scholar 

  • Wang S, Ni Y, Guo F, Sun Z, Ahmed A, Zhao R (2014) Differential expression of hypothalamic fear- and stress-related genes in broiler chickens showing short or long tonic immobility. Domest Anim Endocrinol 47:6–72. doi:10.1016/j.domaniend.2013.11.005

    CAS  Google Scholar 

  • West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592

    Article  PubMed  Google Scholar 

  • White CR, Seymour RS (2003) Mammalian metabolic basal rate is proportional to body mass2/3. Proc Natl Acad Sci USA 100:4046–4049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • White CR, Seymour RS (2005) Allometric scaling of mammalian metabolism. J Exp Biol 208:1611–1619

    Article  CAS  PubMed  Google Scholar 

  • White CR, Phillips NF, Seymour RS (2006) The scaling and temperature dependence of vertebrate metabolism. Biol Lett 2:125–127

    Article  PubMed Central  PubMed  Google Scholar 

  • Zaar M, Larsen E, Wang T (2004) Hysteresis of heart rate and heat exchange of fasting and postprandial savannah monitor lizards (Varanus exanthematicus). Comp Biochem Physiol Part A 137:675–682

    Article  Google Scholar 

Download references

Acknowledgments

Authors are indebted to Mr. Carlos A. Silva, Mr. Mauro Martinazo, Mr. Renato S. Moura (CEB/UNICAMP) for the technical support during development and test of the amplifier. This study was supported by CNPq (Grant No. 300632/2005-3). C. M. G. was the recipient of a scholarship from CNPq – Pibic/Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José W. M. Bassani.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germer, C.M., Tomaz, J.M., Carvalho, A.F. et al. Electrocardiogram, heart movement and heart rate in the awake gecko (Hemidactylus mabouia). J Comp Physiol B 185, 111–118 (2015). https://doi.org/10.1007/s00360-014-0873-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0873-5

Keywords

Navigation