Skip to main content

Advertisement

Log in

The energetics of a Malagasy rodent, Macrotarsomys ingens (Nesomyinae): a test of island and zoogeographical effects on metabolism

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

This study provides first insights into the energetics of the Nesomyinae, a subfamily of rodents endemic to Madagascar. The ancestral nesomyine colonized Madagascar from Africa ca. 30–15 mya at the onset of Oligocene global cooling. We tested the hypothesis that, contrary to what might be expected from Island Biogeography theory, post-colonization character displacement of thermoregulatory traits was constrained by phylogenetic inertia through climate adaptation. The study was conducted in the Parc National d’Ankarafantsika, Madagascar. We measured the basal metabolic rate (BMR) and body temperature (T b) patterns of naturally warm-acclimated, freshly captured adult long-tailed big-footed mice Macrotarsomys ingens (67.4 g). The mean ± SD BMR of M. ingens was 0.298 ± 0.032 Watts (n = 12), 31.7 % lower than that predicted by a phylogenetically independent allometric equation. Body mass was correlated with BMR. The lower critical limit of thermoneutrality (T lc) was 30.7 °C. The mean ± SD T b = 36.1 ± 0.8 °C (n = 12) compared well with the mean T b values for myomorph rodents from the Afrotropical zone, but was lower than those of the Neotropical and Palearctic zones. M. ingens became pathologically hypothermic when exposed to ambient temperatures lower than 18 °C. The soil temperature at depths of 250 mm and deeper did not decrease below 22 °C throughout the austral winter. The thermoregulatory data for M. ingens did not differ from those that characterize mainland Afrotropical rodents. However, BMR and T b were lower than those of Holarctic rodents. Thus, contrary to expectations of Island Biogeography theory that rapid character displacement often occurs in morphological and behavioural traits when mammals colonize islands, M. ingens displayed climate-related physiological traits indicative of phylogenetic inertia. Presumably the tropical conditions that prevailed on Madagascar at the time of colonisation differed very little from those of the African mainland, and hence there was no strong driving force for change. Unlike small tenrecs and lemurs that radiated on Madagascar prior to the Oligocene, traits associated with an insular existence, such as daily torpor and hibernation, were not evident in M. ingens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Austin CC, Rittmeyer EN, Richards SJ, Zug GR (2010) Phylogeny, historical biogeography and body size evolution in Pacific Island Crocodile skinks Tribolonotus (Squamata, Scincidae). Mol Phyl Evol 57(1):227–236. doi:10.1016/j.ympev.2010.06.005

    Article  Google Scholar 

  • Bannikova AA, Lebedev VS, Lissovsky AA, Matrosova V, Abramson NI, Obolenskaya EV, Tesakov AS (2010) Molecular phylogeny and evolution of the Asian lineage of vole genus Microtus (Rodentia:Arvicolinae) inferred from mitochondrial cytochrome b sequence. Biol J Linn Soc 99(3):595–613

    Article  Google Scholar 

  • Blackburn DC, Siler CD, Diesmos AC, McGuire JA, Cannatella DC, Brown RM (2013) An adaptive radiation of frogs in a Southeast Asian Island archipelago. Evolution 67(9):2631–2646. doi:10.1111/evo.12145

    Article  PubMed Central  PubMed  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioural traits are more labile. Evolution 57(4):717–745

    Article  PubMed  Google Scholar 

  • Brown JH, Marquet PA, Taper ML (1993) Evolution of body size: consequences of an energetic definition of fitness. Am Nat 142(4):573–584

    Article  PubMed  CAS  Google Scholar 

  • Buzan EV, Krystufek B, Hanfling B, Hutchinson WF (2008) Mitochondrial phylogeny of Arvicolinae using comprehensive taxonomic sampling yields new insights. Biol J Linn Soc 94(4):825–835. doi:10.1111/j.1095-8312.2008.01024.x

    Article  Google Scholar 

  • Carlton MD, Goodman SM (2003) Big-footed Mice. In: Goodman SM, Benstead JP (eds) The natural history of Madagascar. The University of Chicago Press, Chicago, pp 1386–1388

    Google Scholar 

  • Chaline J, Mein P, Petter F (1977) Les grandes lignes d’une classification, volutive des Muroidea. Mammalia 41:245–252

    Article  Google Scholar 

  • Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ, Stenseth NC, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43(1–2):3–15. doi:10.3354/cr00879

    Article  Google Scholar 

  • Clarke A, Pörtner H-O (2010) Temperature, metabolic power and the evolution of endothermy. Biol Rev 85:703–727

    PubMed  Google Scholar 

  • Clusella-Trullas S, Blackburn TM, Chown SL (2011) Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat 177(6):738–751. doi:10.1086/660021

    Article  PubMed  Google Scholar 

  • Conroy CJ, Cook JA (2000) Molecular systematics of a holarctic rodent (Microtus: Muridae). J Mammal 81(2):344–359

    Article  Google Scholar 

  • Cruz-Neto AP, Garland T, Abe AS (2001) Diet, phylogeny, and basal metabolic rate in phyllostomid bats. Zool Anal Complex Systems 104(1):49–58. doi:10.1078/0944-2006-00006

    CAS  Google Scholar 

  • Darveau CA, Suarez F, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417:166–170

    Article  PubMed  CAS  Google Scholar 

  • D’Elia G (2003) Phylogenetics of Sigmodontinae (Rodentia, Muroidea, Cricetidae), with special reference to the akodont group, and with additional comments on historical biogeography. Cladistics 19(4):307–323. doi:10.1016/s0748-3007(03)00071-9

    Article  Google Scholar 

  • Dewar RE, Richard AF (2007) Evolution in the hypervariable environment of Madagascar. Proc Natl Acad Sci USA 104(34):13723–13727

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Emerson BC (2008) Speciation on islands: what are we learning? Biol J Linn Soc 95(1):47–52. doi:10.1111/j.1095-8312.2008.01120.x

    Article  Google Scholar 

  • Fabre PH, Hautier L, Dimitrov D, Douzery EJP (2012) A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol 12:19. doi:10.1186/1471-2148-12-88

    Article  Google Scholar 

  • Fan ZX, Liu SY, Liu Y, Zeng B, Zhang XY, Guo C, Yue BS (2009) Molecular phylogeny and taxonomic reconsideration of the subfamily Zapodinae (Rodentia: Dipodidae), with an emphasis on Chinese species. Mol Phyl Evol 51(3):447–453. doi:10.1016/j.ympev.2009.03.005

    Article  CAS  Google Scholar 

  • Garbutt N (2007) Mammals of Madagascar. A & C Black, London

    Google Scholar 

  • Garland T, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155(3):346–365

    Article  Google Scholar 

  • Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41(1):18–32

    Article  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: Physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Glazier DS (2005) Beyond the ‘3/4-power law’; variation in the intra- and interspecific scaling of metabolic rate in mammals. Biol Rev 80:611–662

    Article  PubMed  Google Scholar 

  • Goodman SM, Soarimalala V (2005) A new species of Macrotarsomys (Rodentia:Muridae:Nesomyinae) from southwestern Madagascar. Proc Biol Soc Wash 118(2):450–464. doi:10.2988/0006-324x(2005)118[450:ansomr]2.0.co;2

    Article  Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296(5568):707–711. doi:10.1126/science.1070315

    Article  PubMed  CAS  Google Scholar 

  • Hansen TF (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution 51(5):1341–1351

    Article  Google Scholar 

  • Harvey PH, Pagel MD, Rees JA (1991) Mammalian metabolism and life histories. Am Nat 137(4):556–566

    Article  Google Scholar 

  • Hochachka PW, Darveau CA, Andrews RD, Suarez RK (2003) Allometric cascade: a model for resolving body mass effects on metabolism. Comp Biochem Physiol A 134:675–691

    Article  CAS  Google Scholar 

  • Huchon D, Madsen O, Sibbald MJJB, Ament K, Stanhope MJ, Catzeflis F, deJong WW, Douzery EJP (2002) Rodent phylogeny and a timescale for the evolution of glires: evidence from an extensive taxon sampling using three nuclear genes. Mol Biol Evol 19(7):1053–1065

    Article  PubMed  CAS  Google Scholar 

  • Humphries MM, Careau V (2011) Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Int Comp Biol 51(3):419–431. doi:10.1093/icb/icr059

    Article  Google Scholar 

  • Ito M, Jiang W, Sato JJ, Zhen Q, Jiao W, Goto K, Sato H, Ishiwata K, Oku Y, Chai JJ, Kamiya H (2010) Molecular phylogeny of the subfamily Gerbillinae (Muridae, Rodentia) with emphasis on species living in the Xinjiang-Uygur autonomous region of China and based on the mitochondrial cytochrome b and cytochrome c oxidase subunit II genes. Zool Sci 27(3):269–278. doi:10.2108/zsj.27.269

    Article  PubMed  CAS  Google Scholar 

  • Janis CM (1993) Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu Rev Ecol Syst 24:467–500

    Article  Google Scholar 

  • Jansa SA, Weksler M (2004) Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Mol Phyl Evol 31(1):256–276. doi:10.1016/j.ympev.2003.07.002

    Article  CAS  Google Scholar 

  • Jansa SA, Goodman SM, Tucker PK (1999) Molecular phylogeny and biogeography of the native rodents of Madagascar (Muridae:Nesomyinae): a test of the single-origin hypothesis. Cladistics 15:253–270

    Article  Google Scholar 

  • Jury MR (2003) The coherent variability of African river flows: Composite climate structure and the Atlantic circulation. Water Sa 29(1):1–10

    Google Scholar 

  • Kobbe S, Dausmann KH (2009) Hibernation in Malagasy mouse lemurs as a strategy to counter environmental challenge. Naturwissenschaften 96(10):1221–1227. doi:10.1007/s00114-009-0580-3

    Article  PubMed  CAS  Google Scholar 

  • Lavin SR, Karasov WH, Ives AR, Middleton KM, Garland T (2008) Morphometrics of the avian small intestine compared with that of nonflying mammals: a phylogenetic approach. Physiol Biochem Zool 81(5):526–550

    Article  PubMed  Google Scholar 

  • Lebedev VS, Bannikova AA, Tesakov AS, Abramson NI (2007) Molecular phylogeny of the genus Alticola (Cricetiidae, Rodentia) as inferred from the sequence of the cytochrome b gene. Zool Scr 36(6):547–563. doi:10.1111/j.1463-6409.2007.00300.x

    Article  Google Scholar 

  • Lecompte E, Aplin K, Denys C, Catzeflis F, Chades M, Chevret P (2008) Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evol Biol 8. doi:10.1186/1471-2148-8-199

  • Lomolino MV, Sax DF, Palombo MR, van der Geer AA (2012) Of mice and mammoths: evaluations of causal explanations for body size evolution in insular mammals. J Biogeogr 39(5):842–854. doi:10.1111/j.1365-2699.2011.02656.x

    Article  Google Scholar 

  • Losos JB (2010) Adaptive radiation, ecological opportunity, and evolutionary determinism. Am Nat 175(6):623–639. doi:10.1086/652433

    Article  PubMed  Google Scholar 

  • Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457(7231):830–836. doi:10.1038/nature07893

    Article  PubMed  CAS  Google Scholar 

  • Lovegrove BG (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156(2):201–219

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2003) The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J Comp Physiol B 173:87–112

    PubMed  CAS  Google Scholar 

  • Lovegrove BG (2004) Locomotor mode, maximum running speed and basal metabolic rate in placental mammals. Physiol Biochem Zool 77(6):916–928

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2005) Seasonal thermoregulatory responses in mammals. J Comp Physiol B 175:231–247

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2012a) The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol Rev 87:128–162. doi:10.1111/j.1469-185X.2011.00188.x

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2012b) The evolution of mammalian body temperature: the Cenozoic supraendothermic pulses. J Comp Physiol B 182:579–589. doi:10.1007/s00360-011-0642-7

    Article  PubMed  Google Scholar 

  • Lovegrove BG, Génin F (2008) Torpor and hibernation in a basal placental mammal, the lesser hedgehog tenrec Echinops telfairi. J Comp Physiol B 178:691–698

    Article  PubMed  Google Scholar 

  • Lovegrove BG, Heldmaier G, Klingenspor M (2000) Daily heterothermy in mammals: coping with unpredictable environments. Life in the cold: Eleventh International Hibernation Symposium. Springer, Berlin, pp 29–40

    Chapter  Google Scholar 

  • Lovegrove BG, Canale C, Levesque D, Fluch G, Řeháková-Petrů M, Ruf T (2014) Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change? Physiol Biochem Zool 87(1):30–45

    Article  PubMed  Google Scholar 

  • Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 1.12. http://mesquiteproject.org

  • McNab BK (1986) The influence of food habits on the energetics of eutherian mammals. Ecol Monogr 56(1):1–19

    Article  Google Scholar 

  • McNab BK (1992) The comparative energetics of rigid endothermy: the Arvicolidae. J Zool 227:585–606

    Article  Google Scholar 

  • Michaux J, Catzeflis F (2000) The bush-like radiation of muroid rodents is exemplified by the molecular phylogeny of the LCAT nuclear gene. Mol Phyl Evol 17(2):280–293

    Article  CAS  Google Scholar 

  • Michaux J, Reyes A, Catzeflis F (2001) Evolutionary history of the most speciose mammals: Molecular phylogeny of muroid rodents. Mol Biol Evol 18(11):2017–2031

    Article  PubMed  CAS  Google Scholar 

  • Millien V (2011) Mammals evolve faster on smaller islands. Evolution 65(7):1935–1944. doi:10.1111/j.1558-5646.2011.01268.x

    Article  PubMed  Google Scholar 

  • Mittermeier RA, Konstant WR, Hawkins F, Loius EE, Langrand O, Ratsimbazafy J, Rasoloarison R, Ganzhorn J, Rajaobelina S, Tattersall I, Meyers DM, Nash SD (2006) Lemurs of Madagascar. Conservation International

  • Moen DS, Wiens JJ (2009) Phylogenetic evidence for competitively driven divergence: body size in Caribbean treefrogs (Hylidae:Osteopilus). Evol 63(1):195–214. doi:10.1111/j.1558-5646.2008.00538.x

    Article  CAS  Google Scholar 

  • Munoz-Garcia A, Williams JB (2005) Basal metabolic rate in carnivores is associated with diet after controlling for phylogeny. Physiol Biochem Zool 78(6):1039–1056. doi:10.1086/432852

    Article  PubMed  Google Scholar 

  • Nagy ZT, Joger U, Wink M, Glaw F, Vences M (2003) Multiple colonization of Madagascar and Socotra by colubrid snakes: evidence from nuclear and mitochondrial gene phylogenies. P Roy Soc B-Biol Sci 270(1533):2613–2621. doi:10.1098/rspb.2003.2547

    Article  Google Scholar 

  • Naya DE, Spangenberg L, Naya H, Bozinovic F (2012) Latitudinal patterns in rodent metabolic flexibility. Am Nat 179(6):E172–E179. doi:10.1086/665646

    Article  PubMed  Google Scholar 

  • Odling-Smee J, Erwin DH, Palkovacs EP, Feldman MW, Laland KN (2013) Niche construction theory: a practical guide for ecologists. Q Rev Biol 88(1):3–28

    Article  Google Scholar 

  • Orsini L, Koivulehto H, Hanski I (2007) Molecular evolution and radiation of dung beetles in Madagascar. Cladistics 23(2):145–168. doi:10.1111/j.1096-0031.2006.00139.x

    Article  Google Scholar 

  • Parent CE, Crespi BJ (2009) Ecological opportunity in adaptive radiation of Galapagos endemic land snails. Am Nat 174(6):898–905. doi:10.1086/646604

    Article  PubMed  Google Scholar 

  • Philander SG, Fedorov AV (2003) Role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography 18(2):12. doi:10.1029/2002pa000837

    Article  Google Scholar 

  • Pinshow B, Fedak MA, Battles DR, Schmidt-Nielsen K (1976) Energy expenditure for thermoregulation and locomotion in Emperor penquins. Am J Physiol 231(3):903–912

    PubMed  CAS  Google Scholar 

  • Poux C, Madsen O, Marquard E, Vieites DR, de Jong WW, Vences M (2005) Asynchronous colonization of Madagascar by the four endemic clades of primates, tenrecs, carnivores, and rodents as inferred from nuclear genes. Syst Biol 54(5):719–730. doi:10.1080/10635150500234534

    Article  PubMed  Google Scholar 

  • Quammen D (1996) The song of the dodo: Island biogeography and the age of extinctions. Pimlico, London

    Google Scholar 

  • Racey PA, Stephenson PJ (1996) Reproductive and energetic differentiation of the Tenrecidae of Madagascar. In: Biogeographie de Madagascar. Editions de l’Orstom, Paris,

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Reddy S, Driskell A, Rabosky DL, Hackett SJ, Schulenberg TS (2012) Diversification and the adaptive radiation of the vangas of Madagascar. P Roy Soc B-Biol Sci 279(1735):2062–2071. doi:10.1098/rspb.2011.2380

    Article  CAS  Google Scholar 

  • Refinetti R (2010) The circadian rhythm of body temperature. Front BioSci 15:564–594

    Article  Google Scholar 

  • Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3(2):217–223. doi:10.1111/j.2041-210X.2011.00169.x

    Article  Google Scholar 

  • Revell LJ (2013) Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol Evol 4(8):754–759. doi:10.1111/2041-210x.12066

    Article  Google Scholar 

  • Rezende EL, Bozinovic F, Garland T (2004) Climatic adaptation and the evolution of basal and maximum rates of metabolism in rodents. Evolution 58(6):1361–1374

    Article  PubMed  Google Scholar 

  • Ricklefs RE, Bermingham E (2007) The causes of evolutionary radiations in archipelagoes: Passerine birds in the Lesser Antilles. Am Nat 169(3):285–297. doi:10.1086/510730

    Article  PubMed  Google Scholar 

  • Riek A, Geiser F (2013) Allometry of thermal variables in mammals: consequences of body size and phylogeny. Biol Rev 88(3):564–572. doi:10.1111/brv.12016

    Article  PubMed  Google Scholar 

  • Rowe KC, Reno ML, Richmond DM, Adkins RM, Steppan SJ (2008) Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): Multilocus systematics of the old endemic rodents (Muroidea:Murinae). Mol Phyl Evol 47(1):84–101. doi:10.1016/j.ympev.2008.01.001

    Article  CAS  Google Scholar 

  • Russo D, Mucedda M, Bello M, Biscardi S, Pidinchedda E, Jones G (2007) Divergent echolocation call frequencies in insular rhinolophids (Chiroptera): a case of character displacement? J Biogeogr 34(12):2129–2138. doi:10.1111/j.1365-2699.2007.01762.x

    Article  Google Scholar 

  • Savage VM, Gillooly JF, Woodruff WH, West GB, Allen AP, Enquist BJ, Brown JH (2004) The predominance of quarter-power scaling in biology. Funct Ecol 18:257–282

    Article  Google Scholar 

  • Schmid J (2000) Daily torpor in the gray mouse lemur (Microcebus murinus) in Madagascar: energetic consequences and biological significance. Oecologia 123(2):175–183

    Article  Google Scholar 

  • Schmid J (2001) Daily torpor in free-ranging gray mouse lemurs (Microcebus murinus) in Madagascar. Int J Primatol 22(6):1021–1031

    Article  Google Scholar 

  • Schmid J, Speakman JR (2000) Daily energy expenditure of the grey mouse lemur (Microcebus murinus): a small primate that uses torpor. J Comp Physiol B 170(8):633–641

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K (1983) Animal physiology: adaptation and environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Speakman JR, Krol E (2010a) Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J Anim Ecol 79(4):726–746. doi:10.1111/j.1365-2656.2010.01689.x

    PubMed  Google Scholar 

  • Speakman JR, Krol Z (2010b) The Heat Dissipation Limit Theory and evolution of life histories in endotherms -time to dispose of the disposable Soma Theory? Int Comp Biol 50(5):793–807. doi:10.1093/icb/icq049

    Article  Google Scholar 

  • Stephenson PJ (1994) Resting metabolic rate and body temperature in the aquatic tenrec Limnogale mergulus (Insectivora:Tenrecidae). Acta Theriol 39:89–92

    Article  Google Scholar 

  • Stephenson PJ, Racey PA (1994) Seasonal variation in resting metabolic rate and body temperature of streaked tenrecs, Hemicentetes nigriceps and H. semispinosus (Insectivora:Tenrecidae). J Zool 232:285–294

    Article  Google Scholar 

  • Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53(4):533–553

    Article  PubMed  Google Scholar 

  • Steppan SJ, Adkins RM, Spinks PQ, Hale C (2005) Multigene phylogeny of the Old World mice, Murinae, reveals distinct geographic lineages and the declining utility of mitochondrial genes compared to nuclear genes. Mol Phyl Evol 37(2):370–388. doi:10.1016/j.ympev.2005.04.016

    Article  CAS  Google Scholar 

  • Stone RC, Hammer GL, Marcussen T (1996) Prediction of global rainfall probabilities using phases of the Southern Oscillation Index. Nat 384:252–255

    Article  CAS  Google Scholar 

  • Taylor CR, Schmidt-Nielsen K, Raab JL (1970) Scaling of energetic cost of running to body size in mammals. Am J Physiol 219(4):1104–1107

    PubMed  CAS  Google Scholar 

  • Weibel ER, Hoppeler H (2005) Exercise-induced maximal metabolic rate scales with muscle aerobic capacity. J Exp Biol 208(9):1635–1644. doi:10.1242/jeb.01548

    Article  PubMed  Google Scholar 

  • White CR, Kearney MR (2013) Determinants of inter-specific variation in basal metabolic rate. J Comp Physiol B 183(1):1–26. doi:10.1007/s00360-012-0676-5

    Article  PubMed  CAS  Google Scholar 

  • White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass 2/3 P Natl Acad Sci-Biol 100:4046-4049

  • White CR, Seymour RS (2004) Does basal metabolic rate contain a useful signal? Mammalian BMR allometry and correlations with a selection of physiological ecological, and life history variables. Physiol Biochem Zool 77(6):929–941

    Article  PubMed  Google Scholar 

  • White CR, Blackburn TM, Seymour RS (2009) Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evol 63(10):2658–2667. doi:10.1111/j.1558-5646.2009.00747.x

    Article  Google Scholar 

  • Wirta H, Orsini L, Hanski I (2008) An old adaptive radiation of forest dung beetles in Madagascar. Mol Phyl Evol 47(3):1076–1089. doi:10.1016/j.ympev.2008.03.010

    Article  Google Scholar 

  • Withers PC (1977) Measurement of VO2, VCO2, and evaporative water loss with a flow-through mask. J Appl Physiol 42(1):120–123

    PubMed  CAS  Google Scholar 

  • Withers PC, Cooper CE, Larcombe AN (2006) Environmental correlates of physiological variables in marsupials. Physiol Biochem Zool 79(3):437–453

    Article  PubMed  CAS  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall International Inc, New Jersey

    Google Scholar 

Download references

Acknowledgments

This research was financed by publication incentive grants from UKZN, and grants from the NRF, to BGL. KL was supported by a UKZN post-graduate bursary and a Gay Langmuir Foundation grant. Idea Wild is gratefully acknowledged for their donation of equipment. We are especially indebted to Danielle Levesque for support on numerous levels, especially as a translator and research assistant. We are also grateful to our research guide, Tosy, who, despite the language barrier made the field work a success. We are grateful to the Malagasy National Parks, especially the staff of Ankarafantsika; Rene Razafindrajery, Justin Rakotoarimanana, Jacqueline Razaiarimanana and Vanondahy Rafam’andrianjafy. We also thank ICTE/MICET, in particular, Benjamin Andriamihaja, as well as Olivia Andriambolalovasoa, University of Antananarivo, Nomakwezi Mzilikazi, Nelson Mandela Metropolitan University, Cliff Dearden, and the staff at the Durrell breeding centre at Ankarafantsika.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry G. Lovegrove.

Additional information

Communicated by G. Heldmaier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobban, K.D., Lovegrove, B.G. & Rakotondravony, D. The energetics of a Malagasy rodent, Macrotarsomys ingens (Nesomyinae): a test of island and zoogeographical effects on metabolism. J Comp Physiol B 184, 1077–1089 (2014). https://doi.org/10.1007/s00360-014-0853-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0853-9

Keywords

Navigation