Skip to main content
Log in

Enthalpic consequences of reduced chloride binding in Andean frog (Telmatobius peruvianus) hemoglobin

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Based on the exothermic nature of heme oxygenation, the O2 affinity of hemoglobin (Hb) decreases with increasing temperature, which may be physiologically advantageous in augmenting O2 unloading from blood in warm tissues with elevated metabolic rates. This negative oxygenation enthalpy (∆H O) may, however, become maladaptive, as in cold-tolerant ungulates where it may hamper O2 unloading in cold extremities and commonly is mitigated by an ‘additional’ chloride-binding site that decreases the temperature effect by increasing the endothermic release of Cl ions upon O2 binding. Since no previous studies have focused on the consequences of reduced Cl binding, I report and compare the enthalpic effects of chloride ions and the allosteric effector, ATP, on Hbs of the high-altitude aquatic Andean frog Telmatobius peruvianus that lacks the α-chain chloride-binding site, and the lowland (sub-)tropical frog Xenopus laevis that has retained this site and exhibits high chloride sensitivity. In contrast to Xenopus, Telmatobius Hb exhibits high temperature sensitivity (high negative ∆H′) in the presence of Cl ions, supporting the inverse relationship between the number of Cl-binding sites and temperature sensitivity, and extending it to ectothermic vertebrates. The radically reduced chloride binding in Telmatobius Hb permits assessment of the enthalpy of ATP binding [(∆H′ ≈ −62 kJ (mol ATP)−1 at pH 7.0]—which contrasts sharply with previously reported increases in temperature sensitivity by ATP in toad (Bufo bufo) Hb. The high temperature sensitivity associated with decreased chloride binding and low phosphate sensitivity of Telmatobius Hb likely promotes cutaneous O2 uptake in cold, high-altitude ponds and streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Hb:

Hemoglobin

P 50 :

O2 tension that saturates 50 % of the Hb

n 50 :

Hill’s cooperativity coefficient at 50 % oxygenation of the Hb

ATP:

Adenosine triphosphate

DPG:

2,3-Diphosphoglycerate

IPP:

Inositol pentaphosphate

H′:

Apparent enthalpy of oxygenation

φ :

Bohr factor (∆log P 50/∆pH)

References

  • Allen WR (1922) Notes on the Andean frog Telmatobius culeus (Garman). Copeia 1922:52–54

    Article  Google Scholar 

  • Amiconi G, Antonini E, Brunori M, Wyman J, Zolla L (1981) Interaction of hemoglobin with salts. Effects on the functional properties of human hemoglobin. J Mol Biol 152:111–129

    Article  CAS  PubMed  Google Scholar 

  • Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. North-Holland Publishing Co., Amsterdam, p 1

    Google Scholar 

  • Ascenzi P, Clementi ME, Condò SG, Coletta M, Petruzzelli R, Polizio F, Rizzi M, Giunta C, Peracino V, Giardina B (1993) Functional, spectroscopic and structural properties of haemoglobin from chamois (Rupicapra rupicapra) and steinbock (Capra hircus ibex). Biochem J 296:361–365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atha DH, Ackers GK (1974) Calorimetric determination of the heat of oxygenation of human hemoglobin as a function of pH and the extent of reaction. Biochemistry 13(11):2376–2382

    Article  CAS  PubMed  Google Scholar 

  • Barcroft J, King WOR (1909) The effect of temperature on the dissociation curve of blood. J Physiol (Lond) 39:374–384

    CAS  Google Scholar 

  • Bårdgard A, Fago A, Malte H, Weber RE (1997) Oxygen binding and aggregation of hemoglobin from the common European frog, Rana temporaria. Comp Biochem Physiol (B) 117(2):225–231

    Article  Google Scholar 

  • Benesch RE, Benesch R, Yu CI (1969) The oxygenation of hemoglobin in the presence of 2,3-diphosphoglycerate. Effect of temperature, pH, ionic strength, and hemoglobin concentration. Biochemistry 8(6):2567–2571

    Article  CAS  PubMed  Google Scholar 

  • Block BA (1986) Structure of the brain and eye heater tissue in marlins, sailfish, and spearfishes. J Morphol 190:169–189

    Article  CAS  PubMed  Google Scholar 

  • Block BA, Carey FG (1985) Warm brain and eye temperatures in sharks. J Comp Physiol (B) 156:229–236

    Article  CAS  Google Scholar 

  • Bonaventura C, Bonaventura J (1978) Anionic control of hemoglobin function. In: Caughey WS (ed) Biochemical and clinical aspects of hemoglobin abnormalities. Academic Press, Inc., New York, pp 647–663

    Google Scholar 

  • Brix O, Bårdgard A, Mathisen S, Tyler N, Nuutinen M, Condò SG, Giardina B (1990) Oxygen transport in the blood of arctic mammals: adaptation to local heterothermia. J Comp Physiol (B) 159:655–660

    Article  CAS  Google Scholar 

  • Bunn HF, Ransil BJ, Chao A (1971) The interaction between erythrocyte organic phosphates, magnesium ion, and hemoglobin. J Biol Chem 246:5273–5279

    CAS  PubMed  Google Scholar 

  • Caffin JP, Chauvet JP, Acher R (1969) Les hemoglobines des amphibiens: separation et caracterisation des chaines d'une hemoglobine du crapaud Bufo bufo. FEBS Lett 5(3):196–198

    Google Scholar 

  • Campbell KL, Roberts JEE, Watson LN, Stetefeld J, Sloan AM, Signore AV, Howatt JW, Tame JRH, Rohland N, Shen TJ, Austin JJ, Hofreiter, M, Ho C, Weber RE, Cooper A (2010) Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance. Nature Genet 42(6):536–540

    Google Scholar 

  • Carey FG, Gibson QH (1977) Reverse temperature dependence of tuna hemoglobin oxygenation. Biochem Biophys Res Com 78:1376–1382

    Article  CAS  PubMed  Google Scholar 

  • Clementi ME, Misiti F, Orsini F, Pezzotti M, Giardina B (2007) Oxygen transport in Amphidia: the functional properties of hemoglobins from Bufo bufo and Bufo viridis. J Biol Sci 7(5):786–790

    Article  CAS  Google Scholar 

  • Coletta M, Clementi ME, Ascenzi P, Petruzzelli R, Condò SG, Giardina B (1992) A comparative study of the temperature dependence of the oxygen-binding properties of mammalian hemoglobins. Eur J Biochem 204:1155–1157

    Article  CAS  PubMed  Google Scholar 

  • Coletta M, Condò SG, Scatena R, Clementi ME, Baroni S, Sletten SN, Brix O, Giardina B, Condo SG (1994) Synergistic modulation by chloride and organic phosphates of hemoglobin from bear (Ursus arctos). J Mol Biol 236(5):1401–1406

    Article  CAS  PubMed  Google Scholar 

  • Damsgaard C, Storz JF, Hoffmann FG, Fago A (2013) Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, Trachemys scripta. Am J Physiol Regul Integr Comp Physiol 305(8):R961–R967

    Article  CAS  PubMed  Google Scholar 

  • De Rosa MC, Bertonati C, Giardina B (2000) Computational studies of “additional” chloride binding sites in hemoglobin from species living in extreme environment and their physiological significance. In: Mastorakis N (ed) Mathematics and computers in modern science acoustics and music, biology and chemistry, business and economics. World Scientific Engineering Society Press, London, pp 143–152. http://www.worldses.org

    Google Scholar 

  • De Rosa MC, Castagnola M, Bertonati C, Galtieri A, Giardina B (2004) From the Arctic to fetal life: physiological importance and structural basis of an ‘additional’ chloride-binding site in haemoglobin. Biochem J 380(Pt 3):889–896

    PubMed Central  PubMed  Google Scholar 

  • Fago A, Wells RMG, Weber RE (1997) Temperature-dependent enthalpy of oxygenation in Antarctic fish hemoglobins. Comp Biochem Physiol B-Biochem Mol Biol 118B(2):319–326

    Article  CAS  Google Scholar 

  • Fronticelli C, Pechik I, Brinigar WS, Kowalczyk J, Gilliland GL (1994) Chloride ion independence of the Bohr effect in a mutant human hemoglobin β(V1 M + H2deleted). J Biol Chem 269:23965–23969

    CAS  PubMed  Google Scholar 

  • Fronticelli C, Sanna MT, Perez-Alvarado GC, Karavitis M, Lu AL, Brinigar WS (1995) Allosteric modulation by tertiary structure in mammalian hemoglobins. Introduction of the functional characteristics of bovine hemoglobin into human hemoglobin by five amino acid substitutions. J Biol Chem 270(51):30588–30592

    Article  CAS  PubMed  Google Scholar 

  • Giardina B, Brix O, Nuutinen M, El-Sherbini S, Bardgard A, Lazzarino G, Condò SG (1989) Arctic adaptation in reindeer. The energy saving of a hemoglobin. FEBS Lett 247:135–138

    Article  CAS  PubMed  Google Scholar 

  • Greaney GS, Hobish MK, Powers DA (1980) The effects of temperature and pH on the binding of ATP to carp (Cyprinus carpio) deoxyhemoglobin. J Biol Chem 255(2):445–453

    CAS  PubMed  Google Scholar 

  • Hamasaki N, Rose ZB (1974) The binding of phosphorylated red cell metabolites to human hemoglobin A. J Biol Chem 249:7896–7901

    CAS  PubMed  Google Scholar 

  • Hazard ES, Hutchison VH (1982) Distribution of acid-soluble phosphates in the erythrocytes of selected species of amphibians. Comp Biochem Physiol (A) 73A:111–124

    Article  Google Scholar 

  • Hofmann O, Schreitmuller T, Braunitzer G (1986) Die Primästruktur der Hämoglobine von Eisbär (Ursus maritimus, Varnivora) und Kragenbär (Ursus tibetanus, Carnivora). Biol Chem Hoppe Seyler 367(1): 53–59

  • Hutchison VH, Haines HB, Engbretson G (1976) Aquatic life at high altitude: respiratory adaptations in the Lake Titicaca frog, Telmatobius culeus. Respir Physiol 27(1):115–129

    Article  CAS  PubMed  Google Scholar 

  • Imai K, Tyuma I (1973) Thermodynamical analysis of oxygen equilibrium of stripped hemoglobin. Biochem Biophys Res Commun 51(1):52–58

    Article  CAS  PubMed  Google Scholar 

  • Jessen T-H, Weber RE, Fermi G, Tame J, Braunitzer G (1991) Adaptation of bird hemoglobins to high altitudes: demonstration of molecular mechanism by protein engineering. Proc Natl Acad Sci USA 88:6519–6522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johansen K, Weber RE (1976) On the adaptability of haemoglobin function to environmental conditions. In: Spencer Davies P (ed) Perspectives in experimental biology, vol 1, ZoologyPergamon Press, Oxford, New York, pp 219–234

    Google Scholar 

  • Jokumsen A, Weber RE (1980) Haemoglobin-oxygen binding properties in the blood of Xenopus laevis, with special reference to the influences of aestivation and of temperature and salinity acclimation. J Exp Biol 86:19–37

    CAS  Google Scholar 

  • Kister J, Bohn B, Marden MC, Poyart C (1989) Analysis of oxygen binding by Xenopus laevis hemoglobin: implications for the root effect. Respir Physiol 76(2):191–203

    Article  CAS  PubMed  Google Scholar 

  • Kleinschmidt T, Sgouros JG (1987) Hemoglobin sequences. Biol Chem Hoppe-Seyler 368:579–615

    Article  CAS  PubMed  Google Scholar 

  • Larsen C, Malte H, Weber RE (2003) ATP induced reverse temperature effect in iso-hemoglobins from the endothermic porbeagle shark (Lamna nasus). J Biol Chem 278(33):30741–30747

    Article  CAS  PubMed  Google Scholar 

  • Marta M, Patamia M, Colella A, Sacchi S, Pomponi M, Kovacs KM, Lydersen C, Giardina B (1998) Anionic binding site and 2,3-DPG effect in bovine hemoglobin. Biochemistry 37(40):14024–14029

    Article  CAS  PubMed  Google Scholar 

  • Navas CA, Chaui-Berlinck JG (2007) Respiratory physiology of high-altitude anurans: 55 years of research on altitude and oxygen. Respir Physiol Neurobiol 158(2–3):307–313

    Article  PubMed  Google Scholar 

  • Nelson DP, Miller WD, Kiesow LA (1974) Calorimetric studies of hemoglobin function, the binding of 2,3-diphosphoglycerate and inositol hexaphosphate to human hemoglobin A. J Biol Chem 249(15):4770–4775

    CAS  PubMed  Google Scholar 

  • O’Donnell S, Mandaro R, Schuster TM, Arnone A (1979) X-ray diffraction and solution studies of specifically carbamylated human hemoglobin A. Evidence for the location of a proton- and oxygen-linked chloride binding site at valine 1α. J Biol Chem 254(23):12204–12208

    PubMed  Google Scholar 

  • Perutz MF (1983) Species adaptation in a protein molecule. Mol Biol Evol 1(1):1–28

    Google Scholar 

  • Perutz MF, Fermi G, Poyart C, Pagnier J, Kister J (1993) A novel allosteric mechanism in haemoglobin. Structure of bovine deoxyhemoglobin, absence of specific chloride-binding sites and origin of the chloride-linked Bohr effect in bovine and human haemoglobin. J Mol Biol 233(3):536–545

    Article  CAS  PubMed  Google Scholar 

  • Pomponi M, Gavuzzo E, Bertonati C, Derocher AE, Lydersen C, Wiig O, Kovacs KM (2004) Hemoglobin, pH and DPG/chloride shifting. Biochimie 86(12):927–932

    Article  CAS  PubMed  Google Scholar 

  • Razynska A, Fronticelli C, Di Cera E, Gryczynski Z, Bucci E (1990) Effect of temperature on oxygen affinity and anion binding of bovine hemoglobin. Biophys Chem 38(1–2):111–115

    Article  CAS  PubMed  Google Scholar 

  • Richard V, Dodson GG, Mauguen Y (1993) Human deoxyhemoglobin-2,3-diphosphoglycerate complex low-structure at 2.5 Å resolution. J Mol Biol 233:270–274

    Google Scholar 

  • Riggs AF (1988) The Bohr effect. Annu Rev Physiol 50:181–204

    Article  CAS  PubMed  Google Scholar 

  • Ruiz G, Rosenmann M, Veloso A (1983) Respiratory and hematological adaptations to high altitude in Telmatobius frogs from the Chilean Andes. Comp Biochem Physiol (A) 76(1):109–114

    Article  Google Scholar 

  • Samaja M, Melotti D, Rovida E, Rossi-Bernardi L (1983) Effect of temperature on the p50 value for human blood. Clin Chem 29(1):110–114

    CAS  PubMed  Google Scholar 

  • Sasagawa K, Imai K, Kobayashi M (2006) Influence of allosteric effectors and temperature on oxygen binding properties and the bohr effect of bovine hemoglobin. Zool Sci 23(6):565–572

    Article  CAS  PubMed  Google Scholar 

  • Signore AV, Stetefeld J, Weber RE, Campbell KL (2012) Origin and mechanism of thermal insensitivity in mole hemoglobins: a test of the ‘additional’ chloride binding site hypothesis. J Exp Biol 215:518–525

    Article  CAS  PubMed  Google Scholar 

  • Smith DJ, Zhu H, Kolatkar PR, Tam L-T, Baldwin TO, Roe BA, Broyles RH, Riggs AF (1993) The hemoglobin of the bullfrog, Rana catesbiana. The cDNA-derived amino acid sequences of the a chains of adult hemoglobins B and C: their roles in deoxygenation-induces aggregation. J Biol Chem 268:26961–26971

    Google Scholar 

  • Tattersall GJ, Boutilier RG (1997) Balancing hypoxia and hypothermia in cold-submerged frogs. J Exp Biol 200(Pt 6):1031–1038

    CAS  PubMed  Google Scholar 

  • Tam L-T, Gray GP, Riggs AF (1986) The hemoglobins of the bullfrog Rana catesbiana. The structure of the b chain of component C and the role of the a chain in the formation of inrtermolecular disulfide bonds. J Biol Chem 261:8290–8294

    Google Scholar 

  • Tattersall GJ, Boutilier RG (1999) Behavioural oxy-regulation by cold-submerged frogs in heterogeneous oxygen environments. Can J Zool 177:843–850

    Article  Google Scholar 

  • Weber RE (1981) Cationic control of O2 affinity in lugworm erythrocruorin. Nature 292:386–387

    Article  CAS  Google Scholar 

  • Weber RE (1992) Use of ionic and zwitterionic (Tris/BisTris and HEPES) buffers in studies on hemoglobin function. J Appl Physiol 72:1611–1615

    CAS  PubMed  Google Scholar 

  • Weber RE (1996) Hemoglobin adaptation in Amazonian and temporate fish with special reference to hypoxia, allosteric effectors and functional heterogeneity. In: Val AL, Almeida-Val VMF, Randall DJ (eds) Physiology and biochemistry of the fishes of the Amazon. INPA, Manaus, pp75–90

  • Weber RE (2011) High-altitude adaptation in Andean frog hemoglobin-O2 binding. Enthalpic consequence of reduced chloride sensitivity. Comp Physiol Biochem (Japan) 28(2 Suppl.):89

    Google Scholar 

  • Weber RE, Campbell KL (2011) Temperature dependence of haemoglobin-oxygen affinity in heterothermic vertebrates: mechanisms and biological significance. Acta Physiol 202:549–562

    Article  CAS  Google Scholar 

  • Weber RE, Fago A (2004) Functional adaptation and its molecular basis in vertebrate hemoglobins, neuroglobins and cytoglobins. Respir Physiol Neurobiol 144(2–3):141–159

    Article  CAS  PubMed  Google Scholar 

  • Weber RE, Wells RMG, Rossetti JE (1985) Adaptations to neoteny in the salamander, Necturus maculosus. Blood respiratory properties and interactive effects of pH, temperature and ATP on hemoglobin oxygenation. Comp Biochem Physiol 80A:495–501

    Article  CAS  Google Scholar 

  • Weber RE, Fago A, Val AL, Bang A, Van Hauwaert ML, Dewilde S, Zal F, Moens L (2000) Isohemoglobin differentiation in the bimodal-breathing Amazon catfish Hoplosternum littorale. J Biol Chem 275(23):17297–17305

    Article  CAS  PubMed  Google Scholar 

  • Weber RE, Ostojic H, Fago A, Dewilde S, Van Hauwaert ML, Moens L, Monge C (2002) Novel mechanism for high-altitude adaptation in hemoglobin of the Andean frog Telmatobius peruvianus. Am J Physiol Regul Integr Comp Physiol 283(5):R1052–R1060

    PubMed  Google Scholar 

  • Weber RE, Behrens JW, Malte H, Fago A (2008) Thermodynamics of oxygenation-linked proton and lactate binding govern the temperature sensitivity O2 binding in crustacean (Carcinus maenas) haemocyanin. J Exp Biol 211(Pt 7):1057–1062

    Article  CAS  PubMed  Google Scholar 

  • Weber RE, Campbell KL, Fago A, Malte H, Jensen FB (2010) ATP-induced temperature independence of hemoglobin-O2 affinity in heterothermic billfish. J Exp Biol 213(9):1579–1585

    Article  CAS  PubMed  Google Scholar 

  • Wells RMG, Weber RE (1985) Fixed acid and carbon dioxide Bohr effects as functions of hemoglobin-oxygen saturation and intra-erythrocytic pH in the blood of the frog, Rana temporaria. Pflügers Arch 403:7–12

    Article  CAS  PubMed  Google Scholar 

  • Wells RMG, Trevenen BJ, Brittain T (1989) Organic phosphate-hemoglobin interactions appear non-adaptive in the hypoxic toad, Bufo marinus. Comp Biochem Physiol (B) 92B:587–593

    CAS  Google Scholar 

  • Wyman J (1948) Heme proteins. Adv Prot Chem 4:407–531

    Article  CAS  Google Scholar 

  • Wyman J (1964) Linked functions and reciprocal effects in hemoglobin: a second look. Adv Prot Chem 19:223–286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Kevin L. Campbell (Winnipeg) and Angela Fago (Aarhus) for critical comments, and the Faculty of Science and Technology, Aarhus University for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy E. Weber.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, R.E. Enthalpic consequences of reduced chloride binding in Andean frog (Telmatobius peruvianus) hemoglobin. J Comp Physiol B 184, 613–621 (2014). https://doi.org/10.1007/s00360-014-0823-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0823-2

Keywords

Navigation