Skip to main content
Log in

Polyunsaturated fats, membrane lipids and animal longevity

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Fatty acids are essential for life because they are essential components of cellular membranes. Lower animals can synthesize all four classes of fatty acids from non-lipid sources, but both omega-6 and omega-3 cannot be synthesized de novo by ‘higher’ animals and are therefore essential components of their diet. The relationship between normal variation in diet fatty acid composition and membrane fatty acid composition is little investigated. Studies in the rat show that, with respect to the general classes of fatty acids (saturated, monounsaturated and polyunsaturated) membrane fatty acid composition is homeostatically regulated despite diet variation. This is not the case for fatty acid composition of storage lipids, which responds to diet variation. Polyunsaturated fatty acids are important determinants of physical and chemical properties of membranes. They are the substrates for lipid peroxidation and it is possible to calculate a peroxidation index (PI) for a particular membrane composition. Membrane PI appears to be homeostatically regulated with respect to diet PI. Membrane fatty acid composition varies among species and membrane PI is inversely correlated to longevity in mammals, birds, bivalve molluscs, honeybees and the nematode Caenorhabditis elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott SK, Else PL, Atkins TA, Hulbert AJ (2012) Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance. Biochim Biophys Acta 1818:1309–1317

    Article  CAS  PubMed  Google Scholar 

  • Ackerman D, Gems D (2012) The mystery of C. elegans aging: an emerging role for fat. Bioessays 34:466–471

    Article  CAS  PubMed  Google Scholar 

  • Allport S (2006) The Queen of Fats. Univ California Press, Berkele

    Google Scholar 

  • AnAge: The animal ageing and longevity database. http://genomics.senescence.info/species/

  • Barja G, Cadenas S, Rojas C, Perez-Campo R, Lopez-Torres M (1994) Low mitochondrial free radical production per unit of O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radic Res 21:317–328

    Article  CAS  PubMed  Google Scholar 

  • Bartke A, Brown-Borg H (2004) Life extension in the dwarf mouse. Curr Top Dev Biol 63:189–225

    Article  CAS  PubMed  Google Scholar 

  • Brand MD, Turner N, Ocloo A, Else PL, Hulbert AJ (2003) Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochem J 376:741–748

    Article  CAS  PubMed  Google Scholar 

  • Brock TJ, Browse J, Watts JL (2006) Genetic regulation of unsaturated fatty acid composition in C. elegans. PLoS Genet 2:997–1005

    Article  CAS  Google Scholar 

  • Brock TJ, Browse J, Watts JL (2007) Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics 176:865–875

    Article  CAS  PubMed  Google Scholar 

  • Burr GO, Burr MM (1929) A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem 82:345–367

    CAS  Google Scholar 

  • Burr GO, Burr MM (1930) On the nature and role of the fatty acids essential in nutrition. J Biol Chem 86:587–621

    CAS  Google Scholar 

  • Buttemer WA, Battam H, Hulbert AJ (2008) Fowl play and the price of petrel: long-living Procellariiformes have peroxidation-resistant membrane composition compared to short-living Galliformes. Biol Lett 4:351–354

    Article  PubMed Central  PubMed  Google Scholar 

  • Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA (2001) Fat metabolism in insects. Ann Rev Nutr 21:23–46

    Article  CAS  Google Scholar 

  • Castell JD, Sinnhuber RO, Wales JH, Lee DJ (1972) Essential fatty acids in the diet of rainbow trout (Salmo gairdneri): growth, feed conversion and some gross deficiency symptoms. J Nutr 102:77–86

    CAS  PubMed  Google Scholar 

  • Cefalu WT, Wang ZQ, Bell-Farrow AD, Terry JG, Sonntag W, Waite M, Parks J (2000) Chronic caloric restriction alters muscle membrane fatty acid content. Exp Gerontol 35:331–341

    Article  CAS  PubMed  Google Scholar 

  • Cha MC, Jones PJF (2000) Energy restriction dilutes the changes related to dietary fat type in membrane phospholipid fatty acid composition in rats. Metabolism 49:977–983

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Hagopian K, McDonald RB, Bibus D, Lopez-lluch G, Villalba JM, Navas P, Ramsey JJ (2012) The influence of dietary lipid composition on skeletal muscle mitochondria from mice following 1 month of calorie restriction. J Gerontol Biol Sci Med Sci 67:1121–1131

    Article  Google Scholar 

  • Couture P, Hulbert AJ (1995) Membrane fatty acid composition is related to body mass in mammals. J Memb Biol 148:27–39

    Article  CAS  Google Scholar 

  • Cripps C, Blomquist GJ, de Renobales M (1986) de novo biosynthesis of linoleic acid in insects. Biochim Biophys Acta 876:572–580

    Article  CAS  Google Scholar 

  • de Renobales M, Cripps C, Stanley-Samuelson DW, Jurenka RA, Blomquist GJ (1987) Biosynthesis of linoleic acid in insects. TIBS 12:364–366

    Google Scholar 

  • Else PL, Wu BJ (1999) What role for membranes in determining the higher sodium pump molecular activity of mammals compared to ectotherms? J Comp Physiol B 169:296–302

    Article  CAS  PubMed  Google Scholar 

  • Fang S, Ting CT, Lee CR, Chu KH, Wang CC, Tsaur SC (2009) Molecular evolution and functional diversification of fatty acid desaturases after recurrent gene duplication in Drosophila. Mol Biol Evol 26:1447–1456

    Article  CAS  PubMed  Google Scholar 

  • Faulks SC, Turner N, Else PL, Hulbert AJ (2006) Calorie restriction in mice: effects on body composition, daily activity, metabolic rate, mitochondrial ROS production and membrane fatty acid composition. J Gerontol 61:781–794

    Article  Google Scholar 

  • Feller SE (2008) Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids. Chem Phys Lipids 153:76–80

    Article  CAS  PubMed  Google Scholar 

  • Feller SE, Gawrisch K, MacKerell AD Jr (2002) Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124:318–326

    Article  CAS  PubMed  Google Scholar 

  • GironCalle J, Schmid PC, Schmid HHO (1997) Effects of oxidative stress on glycerolipid acyl turnover in rat hepatocytes. Lipids 32:917–923

    Article  CAS  Google Scholar 

  • Grubb BR (1982) Cardiac output and stroke volume in exercising ducks and pigeons. J Appl Physiol 53:207–211

    CAS  PubMed  Google Scholar 

  • Haddad L, Kelbert L, Hulbert AJ (2007) Extended longevity of queen honeybees compared to workers is associated with peroxidation-resistant membranes. Exp Gerontol 42:601–609

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Hammad LA, Cooper BS, Fisher NP, Montooth KL, Karty JA (2011) Profiling and quantification of Drosophila melanogaster lipids using liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 25:2959–2968

    Article  CAS  PubMed  Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Ann Rev Physiol 57:19–42

    Article  CAS  Google Scholar 

  • Herskind AM, McGue M, Holm NV, Sorenson TIA, Harvald B, Vaupel JW (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870-1900. Hum Genet 97:319–323

    Article  CAS  PubMed  Google Scholar 

  • Hillyard SL, German JB (2009) Quantitative lipid analysis and lifespan of the fat-3 mutant of Caenorhabditis elegans. J Agric Food Chem 57:3389–3396

    Article  CAS  PubMed  Google Scholar 

  • Holman RT (1954) Autoxidation of fats and related substances. In: Holman RT, Lundberg WO, Malkin T (eds) Progress in chemistry of fats and other lipids, vol 2. Pergamon Press, London, pp 51–98

    Google Scholar 

  • Holman RT (1992) A long scaly tale—the study of essential fatty acid deficiency at the University of Minnesota. In: Sinclair A, Gibson R (eds) Essential fatty acids and eicosanoids (3rd international congress). Am Oil Chem Soc, Champaign, pp 3–17

    Google Scholar 

  • Holman RT (1998) The slow discovery of the importance of ω3 essential fatty acids in human health. J Nutr 128:427S–433S

    CAS  PubMed  Google Scholar 

  • Holman RT, Johnson SB, Hatch TF (1982) A case of human linolenic acid deficiency involving neurological abnormalities. Am J Clin Nutr 35:617–623

    CAS  PubMed  Google Scholar 

  • Hou NS, Taubert S (2012) Function and regulation of lipid biology in Caenorhabditis elegans aging. Frontiers Physiol 3:1–10. Article 143. doi:10.3389/fphys.2012.00143

  • Hulbert AJ (2000) Thyroid hormones and their effects: a new perspective. Biol Rev 75:519–631

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ (2005) On the importance of fatty acid composition of membranes for aging. J Theor Biol 234:277–288

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ (2007) Membrane fatty acids as pacemakers of animal metabolism. Lipids 42:811–819

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ (2010) Metabolism and longevity: is there a role for membrane fatty acids? Integr Comp Biol 50:808–817

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Abbott SK (2011) Nutritional ecology of essential fatty acids: an evolutionary perspective. Aust J Zool 59:369–379

    Article  Google Scholar 

  • Hulbert AJ, Else PL (2000) Mechanisms underlying the cost of living in animals. Ann Rev Physiol 62:207–235

    Article  CAS  Google Scholar 

  • Hulbert AJ, Rana T, Couture P (2002a) The acyl composition of mammalian phospholipids: an allometric analysis. Comp Biochem Physiol B 132:515–527

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Faulks SC, Buttemer WA, Else PL (2002b) Acyl composition of muscle membranes varies with body size in birds. J Exp Biol 205:3561–3569

    CAS  PubMed  Google Scholar 

  • Hulbert AJ, Turner N, Storlien LH, Else PL (2005) Dietary fats and membrane function: implications for metabolism and disease. Biol Rev 80:155–169

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Faulks SC, Harper JM, Miller RA, Buffenstein R (2006) Extended longevity of wild-derived mice is associated with peroxidation-resistant membranes. Mech Ageing Dev 127:653–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition and life span of animals. Physiol Rev 87:1175–1213

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Beard L, Grigg GC (2008) The exceptional longevity of an egg-laying mammal, the short-beaked echidna (Tachyglossus aculeatus) is associated with peroxidation-resistant membrane composition. Exp Gerontol 43:729–733

    Article  CAS  PubMed  Google Scholar 

  • Ishinaga M, Kanamoto R, Kito M (1979) Distribution of phospholipid molecular species in outer and cytoplasmic membranes of Escherichia coli. J Biochem 86:161–165

    CAS  PubMed  Google Scholar 

  • ISSFAL Recommendations for intake of polyunsaturated fatty acids in healthy adults. (http://www.issfal.org/statements/adequate-intakes-recommendation-table)

  • Jeon TI, Lim BO, Yu BP, Lim Y, Jeon EJ, Park DK (2001) Effect of dietary restriction on age-related increase of liver susceptibility to peroxidation in rats. Lipids 36:589–593

    Article  CAS  PubMed  Google Scholar 

  • Jobson RW, Nabholz B, Galtier N (2010) An evolutionary genome scan for longevity-related natural selection in mammals. Mol Biol Evol 27:840–847

    Article  CAS  PubMed  Google Scholar 

  • Kelly MA, Usher MJ, Ujvari B, Madsen T, Wallman JF, Buttemer WA, Hulbert AJ (2013) Diet fatty acid profile, membrane composition and lifespan: an experimental study using the blowfly (Calliphora stygia). Mech Ageing Dev (in review)

  • Kenyon C, Chang J, Gensch E, Rudener A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  CAS  PubMed  Google Scholar 

  • Klass MR (1983) A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 22:279–286

    Article  CAS  PubMed  Google Scholar 

  • Kraffe E, Soudant P, Marty Y (2004) Fatty acids of serine, ethanolamine, and choline plasmalogens in some marine bivalves. Lipids 39:59–66

    Article  CAS  PubMed  Google Scholar 

  • Laganiere S, Yu BP (1987) Anti-lipoperoxidation action of food restriction. Biochem Biophys Res Commun 145:1185–1191

    Article  CAS  PubMed  Google Scholar 

  • Lambert AJ, Portero-Otin M, Pamplona R, Merry BJ (2004) Effect of ageing and caloric restriction on specific markers of protein oxidative damage and membrane peroxidizability in rat liver mitochondria. Mech Ageing Dev 125:529–538

    Article  CAS  PubMed  Google Scholar 

  • Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A et al (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6:607–618

    Article  CAS  PubMed  Google Scholar 

  • Lands WE, Inoue M, Sugiura Y, Okuyama H (1982) Selective incorporation of polyunsaturated fatty acids into phosphatidylcholine by rat liver microsomes. J Biol Chem 25:14968–14972

    Google Scholar 

  • Lee AG (1991) Lipids and their effects on membrane proteins: evidence against a role for fluidity. Prog Lipid Res 30:323–348

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Yu BP, Herlihy JT (1999) Modulation of cardiac mitochondrial membrane fluidity by age and calorie intake. Free Radic Biol Med 26:260–265

    Article  CAS  PubMed  Google Scholar 

  • Leyton J, Drury PJ, Crawford MA (1987a) Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br J Nutr 57:383–393

    Article  CAS  PubMed  Google Scholar 

  • Leyton J, Drury PJ, Crawford MA (1987b) In vivo incorporation of labeled fatty acids in rat liver lipids after oral administration. Lipids 22:553–558

    Article  CAS  PubMed  Google Scholar 

  • Lin YC, Horvath SM (1972) Autonomic nervous control of cardiac frequency in the exercise-trained rat. J Appl Physiol 33:796–799

    CAS  PubMed  Google Scholar 

  • Litman B, Mitchell DC (1996) A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids 31:S193–S197

    Article  CAS  PubMed  Google Scholar 

  • Lombard J, Lopez-Garcia P, Moreira D (2012) The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 10:507–515

    CAS  PubMed  Google Scholar 

  • Lyman CP, O’Brien RC, Greene GC, Papafrangos ED (1981) Hibernation and longevity in the Turkish Hamster Mesocricetus brandti. Science 212:668–670

    Article  CAS  PubMed  Google Scholar 

  • Magnoni L, Vaillancourt E, Weber JM (2008) High resting triacylglycerol turnover of rainbow trout exceeds the energy requirements of endurance swimming. Am J Physiol Regul Integr Comp Physiol 295:R309–R315

    Article  CAS  PubMed  Google Scholar 

  • Manning R (2001) Fatty acids in pollen: a review of their importance for honey bees. Bee World 82:60–75

    Google Scholar 

  • McGuire LP, Fenton MB, Guglielmo CG (2013) Phenotypic flexibility in migrating bats: seasonal variation in body composition, organ sizes and fatty acid profiles. J Exp Biol 216:800–808

    Article  CAS  PubMed  Google Scholar 

  • McPartland J, di Marzo V, de Petrocellis V, Mercer A, Glass M (2001) Cannabinoid receptors are absent in insects. J Comp Neurol 436:423–429

    Article  CAS  PubMed  Google Scholar 

  • Miller RA, Harper JM, Dysko RC, Durkee SJ, Austad SN (2002) Longer life spans and delayed maturation in wild-derived mice. Exp Biol Med 227:500–508

    CAS  Google Scholar 

  • Mitchell DC, Niu SL, Litman BJ (2003) Enhancement of G protein-coupled signaling by DHA phospholipids. Lipids 38:437–443

    Article  CAS  PubMed  Google Scholar 

  • Mitchell TW, Buffenstein R, Hulbert AJ (2007) Membrane lipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics. Exp Gerontol 42:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Montgomery MK, Hulbert AJ, Buttemer WA (2011) The long life of birds: the rat–pigeon comparison revisited. PLoS ONE 6:e24138 (15 pp)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montgomery MK, Hulbert AJ, Buttemer WA (2012a) Does the oxidative stress theory of aging explain longevity differences in birds? I. Mitochondrial ROS production. Exp Gerontol 47:203–210

    Article  CAS  PubMed  Google Scholar 

  • Montgomery MK, Hulbert AJ, Buttemer WA (2012b) Does the oxidative stress theory explain longevity differences in birds? II. Antioxidant systems and oxidative damage. Exp Gerontol 47:211–222

    Article  CAS  PubMed  Google Scholar 

  • Montgomery MK, Hulbert AJ, Buttemer WA (2012c) Metabolic rate and membrane fatty acid composition in birds: a comparison between long-living parrots and short-living fowl. J Comp Physiol B 182:127–137

    Article  CAS  PubMed  Google Scholar 

  • Munro D, Blier PU (2012) The extreme longevity of Arctica islandica is associated with increased peroxidation resistance in mitochondrial membranes. Aging Cell 11:845–855

    Article  CAS  PubMed  Google Scholar 

  • Pamplona R (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta 1777:1249–1262

    Article  CAS  PubMed  Google Scholar 

  • Pamplona R, Portero-Otin M, Riba D, Ruiz C, Prat J, Bellmunt MJ, Barja G (1998) Mitochondrial membrane peroxidisability index is inversely related to maximum lifespan in mammals. J Lipid Res 39:1989–1994

    CAS  PubMed  Google Scholar 

  • Pamplona R, Barja G, Portero-Otin M (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann NY Acad Sci 959:475–490

    Article  CAS  PubMed  Google Scholar 

  • Pereira SL, Leonard AE, Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandin Leukot Essent Fatty Acids 68:97–106

    Article  CAS  Google Scholar 

  • Perez CL, van Gilst MR (2008) A 13C isotope labeling strategy reveals the influence of insulin signaling on lipogenesis in C. elegans. Cell Metab 8:266–274

    Article  CAS  PubMed  Google Scholar 

  • Puca AA, Andrew P, Novelli V, Anselmi CV, Somalvico F, Cirillo NA, Chatgilialoglu C, Ferreri C (2008) Fatty acid profile of erythrocyte membranes as possible biomarker of longevity. Rejuvenation Res 11:1–10

    Article  Google Scholar 

  • Rivers JPW, Sinclair AJ, Crawford MA (1975) Inability of the cat to desaturate essential fatty acids. Nature 258:171–173

    Article  CAS  PubMed  Google Scholar 

  • Rock CO, Jackowski S, Cronan JE Jr (1996) Lipid metabolism in prokaryotes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, New York, pp 35–74

    Chapter  Google Scholar 

  • Sayanova O, Haslam RP, Caleron MV, Ruiz-Lopez N, Worthy C, Rooks P, Allen MJ, Napier JA (2011) Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi. Phytochem 72:594–600

    Article  CAS  Google Scholar 

  • Schmid PC, Deli E, Schmid HHO (1995) Generation and remodeling of phospholipid molecular species in rat hepatocytes. Arch Biochem Biophys 319:168–176

    Article  CAS  PubMed  Google Scholar 

  • Shmookler Reis RJ, Xu L, Lee H, Chae M, Thaden JJ, Bharill P, Tazearslan C, Siegel E, Alla R, Zimniak P, Ayyadevara S (2011) Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging 3:125–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silvius JR (1982) Thermotropic phase transitions of pure lipids in model membranes and their modifications by membrane proteins. Lipid–Protein Interact 2:239–281

    CAS  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525

    Article  CAS  PubMed  Google Scholar 

  • Sprecher H, Chen Q (1999) Polyunsaturated fatty acid biosynthesis: a microsomal-peroxisomal process. Prostaglandins Leukot Essent Fatty Acids 60:317–321

    Article  CAS  PubMed  Google Scholar 

  • Stanley D (2006) Prostaglandins and other eicosanoids in insects: biological significance. Ann Rev Entomol 51:25–44

    Article  CAS  Google Scholar 

  • Valencak TG, Ruf T (2011) Feeding into old age: long-term effects of dietary fatty acid supplementation on tissue composition and life span in mice. J Comp Physiol B 181:289–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valencak TG, Ruf T (2013) Phospholipid composition and longevity: lessons from Ames dwarf mice. Age (in press)

  • Valentine R, Valentine D (2010) Omega-3 Fatty Acids and the DHA principle. CRC Press, Boca Raton

    Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    Article  CAS  Google Scholar 

  • Watts JL, Browse J (2002) Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc Nat Acad Sci 99:5854–5859

    Article  CAS  PubMed  Google Scholar 

  • Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

  • Wu BJ, Hulbert AJ, Storlien LH, Else PL (2004) Membrane lipids and sodium pumps of cattle and crocodiles: an experimental test of the membrane pacemaker theory of metabolism. Am J Physiol 287:R633–R641

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Much of our work reported in this review was supported by grants from the Australian Research Council. The manuscript benefited from the comments of referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Hulbert.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulbert, A.J., Kelly, M.A. & Abbott, S.K. Polyunsaturated fats, membrane lipids and animal longevity. J Comp Physiol B 184, 149–166 (2014). https://doi.org/10.1007/s00360-013-0786-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0786-8

Keywords

Navigation