Skip to main content
Log in

Regulation of a truncated isoform of AMP-activated protein kinase α (AMPKα) in response to hypoxia in the muscle of Pacific oyster Crassostrea gigas

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

AMP-activated protein kinase α (AMPKα) is a key regulator of energy balance in many model species during hypoxia. In a marine bivalve, the Pacific oyster Crassostrea gigas, we analyzed the protein content of adductor muscle in response to hypoxia during 6 h. In both smooth and striated muscles, the amount of full-length AMP-activated protein kinase α (AMPKα) remained unchanged during hypoxia. However, hypoxia induced a rapid and muscle-specific response concerning truncated isoforms of AMPKα. In the smooth muscle, a truncated isoform of AMPKα was increased from 1 to 6 h of hypoxia, and was linked with accumulation of AKT kinase, a key enzyme of the insulin signaling pathway which controls intracellular glucose metabolism. In this muscle, aerobic metabolism was maintained over the 6 h of hypoxia, as mitochondrial citrate synthase activity remained constant. In contrast, in striated muscle, hypoxia did not induce any significant modification of neither truncated AMPKα nor AKT protein content, and citrate synthase activity was altered after 6 h of hypoxia. Together, our results demonstrate that hypoxia response is specific to muscle type in Pacific oyster, and that truncated AMPKα and AKT proteins might be involved in maintaining aerobic metabolism in smooth muscle. Such regulation might occur in vivo during tidal intervals that cause up to 6 h of hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akberali HB, Trueman ER (1985) Effects of environmental-stress on marine bivalve mollusks. Adv Mar Biol 22:101–198. doi:10.1016/S0065-2881(08)60051-6

    Article  Google Scholar 

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15(23):6541–6551

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. doi:10.1093/nar/25.17.3389

    Google Scholar 

  • Alvarez-Tejado M, Naranjo-Suarez S, Jimenez C, Carrera AC, Landazuri MO, del Peso L (2001) Hypoxia induces the activation of the phosphatidylinositol 3-kinase/Akt cell survival pathway in PC12 cells: protective role in apoptosis. J Biol Chem 276(25):22368–22374. doi:10.1074/jbc.M011688200

    Article  PubMed  CAS  Google Scholar 

  • Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18(24):3004–3009. doi:10.1101/gad.1255404

    Article  PubMed  CAS  Google Scholar 

  • Bacca H, Huvet A, Fabioux C, Daniel JY, Delaporte M, Pouvreau S, Van Wormhoudt A, Moal J (2005) Molecular cloning and seasonal expression of oyster glycogen phosphorylase and glycogen synthase genes. Comp Biochem Physiol B Biochem Mol Biol 140(4):635–646. doi:10.1016/j.cbpc.2005.01.005

  • Beri RK, Marley AE, See CG, Sopwith WF, Aguan K, Carling D, Scott J, Carey F (1994) Molecular cloning, expression and chromosomal localisation of human AMP-activated protein kinase. FEBS Lett 356(1):117–121. doi:10.1016/0014-5793(94)01247-4

    Google Scholar 

  • Berthelin CH, Kellner K, Mathieu M (2000) Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (west coast of France). Comp Biochem Physiol B Biochem Mol Biol 125(3):359–369. doi:10.1016/S0305-0491(99)00187-X

    Article  PubMed  CAS  Google Scholar 

  • Bertrand L, Ginion A, Beauloye C, Hebert AD, Guigas B, Hue L, Vanoverschelde JL (2006) AMPK activation restores the stimulation of glucose uptake in an in vitro model of insulin-resistant cardiomyocytes via the activation of protein kinase B. Am J Physiol Heart Circ Physiol 291(1):H239–H250. doi:10.1152/ajpheart.01269.2005

    Article  PubMed  CAS  Google Scholar 

  • Carling D, Clarke PR, Zammit VA, Hardie DG (1989) Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur J Biochem/FEBS 186(1–2):129–136. doi:10.1111/j.1432-1033.1989.tb15186.x

    Article  CAS  Google Scholar 

  • Carling D, Mayer FV, Sanders MJ, Gamblin SJ (2011) AMP-activated protein kinase: nature’s energy sensor. Nat Chem Biol 7(8):512–518. doi:10.1038/nchembio.610

    Article  PubMed  CAS  Google Scholar 

  • Choi SL, Kim SJ, Lee KT, Kim J, Mu J, Birnbaum MJ, Soo Kim S, Ha J (2001) The regulation of AMP-activated protein kinase by H2O2. Biochem Biophys Res Commun 287(1):92–97. doi:10.1006/bbrc.2001.5544

    Article  PubMed  CAS  Google Scholar 

  • Chopra I, Li HF, Wang H, Webster KA (2011) Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia 55(3):783–794. doi:10.1007/s00125-011-2407-y

    Article  PubMed  Google Scholar 

  • Combet C, Blanchet C, Geourjon C, Deleage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25(3):147–150. doi:10.1016/S0968-0004(99)01540-6

    Article  PubMed  CAS  Google Scholar 

  • Corporeau C, Auffret M (2003) In situ hybridisation for flow cytometry: a molecular method for monitoring stress-gene expression in hemolymph cells of oysters. Aquat Toxicol 64(4):427–435. doi:10.1016/S0166-445X(03)00099-7

    Article  PubMed  CAS  Google Scholar 

  • de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34 (Web Server issue):362–365. doi:10.1093/nar/gkl124

  • Elliott A, Bennett PM (1982) Structure of the thick filaments in molluscan adductor muscle. Soc Gen Physiol Ser 37:11–28

    PubMed  CAS  Google Scholar 

  • Fabioux C, Corporeau C, Quillien V, Favrel P, Huvet A (2009) In vivo RNA interference in oyster-vasa silencing inhibits germ cell development. FEBS J 276(9):2566–2573. doi:10.1111/j.1742-4658.2009.06982.x

    Article  PubMed  CAS  Google Scholar 

  • Ferri N (2011) AMP-activated protein kinase and the control of smooth muscle cell hyperproliferation in vascular disease. Vasc Pharmacol. doi:10.1016/j.vph.2011.10.003

  • Fleury E, Huvet A, Lelong C, de Lorgeril J, Boulo V, Gueguen Y, Bachere E, Tanguy A, Moraga D, Fabioux C, Lindeque P, Shaw J, Reinhardt R, Prunet P, Davey G, Lapegue S, Sauvage C, Corporeau C, Moal J, Gavory F, Wincker P, Moreews F, Klopp C, Mathieu M, Boudry P, Favrel P (2009) Generation and analysis of a 29,745 unique expressed sequence tags from the Pacific oyster (Crassostrea gigas) assembled into a publicly accessible database: the GigasDatabase. BMC Genomics 10:341. doi:10.1186/1471-2164-10-341

    Article  PubMed  Google Scholar 

  • Frederich M, O’Rourke MR, Furey NB, Jost JA (2009) AMP-activated protein kinase (AMPK) in the rock crab, Cancer irroratus: an early indicator of temperature stress. J Exp Biol 212(Pt 5):722–730. doi:10.1242/jeb.021998

    Article  PubMed  CAS  Google Scholar 

  • Funai K, Schweitzer GG, Castorena CM, Kanzaki M, Cartee GD (2010) In vivo exercise followed by in vitro contraction additively elevates subsequent insulin-stimulated glucose transport by rat skeletal muscle. Am J Physiol Endocrinol Metab 298(5):E999–E1010. doi:10.1152/ajpendo.00758.2009

    Article  PubMed  CAS  Google Scholar 

  • Gamboa JL, Garcia-Cazarin ML, Andrade FH (2011) Chronic hypoxia increases insulin-stimulated glucose uptake in mouse soleus muscle. Am J Physiol Regul Integ Comp Physiol 300(1):R85–R91. doi:10.1152/ajpregu.00078.2010

    Article  CAS  Google Scholar 

  • Garcia-Esquivel Z, Bricelj VM, Gonzalez-Gomez MA (2001) Physiological basis for energy demands and early postlarval mortality in the Pacific oyster, Crassostrea gigas. J Exp Mar Biol Ecol 263(1):77–103. doi:10.1016/S0022-0981(01)00300-8

    Article  Google Scholar 

  • Garcia-Esquivel Z, Bricelj VM, Felbeck H (2002) Metabolic depression and whole-body response to enforced starvation by Crassostrea gigas postlarvae. Comp Biochem Physiol A Mol Integr Physiol 133(1):63–77. doi:10.1016/S1095-6433(02)00112-5

    Article  PubMed  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788. doi:10.1093/nar/gkg563

    Article  PubMed  CAS  Google Scholar 

  • Gray JS, Wu RSS, Or YY (2002) Effects of hypoxia and organic enrichment on the coastal marine environment. Mar Ecol Prog Ser 238:249–279. doi:10.3354/meps238249

    Article  Google Scholar 

  • Greenway SC, Storey KB (1999) The effect of prolonged anoxia on enzyme activities in oysters (Crassostrea virginica) at different seasons. J Exp Mar Biol Ecol 242(2):259–272. doi:10.1016/S0022-0981(99)00103-3

    Article  CAS  Google Scholar 

  • Gricourt L, Bonnec G, Boujard D, Mathieu M, Kellner K (2003) Insulin-like system and growth regulation in the Pacific oyster Crassostrea gigas: hrIGF-1 effect on protein synthesis of mantle edge cells and expression of an homologous insulin receptor-related receptor. Gen Comp Endocrinol 134(1):44–56. doi:10.1016/s0016-6480(03)00217-x

    Article  PubMed  CAS  Google Scholar 

  • Hamano K, Awaji M, Usuki H (2005) cDNA structure of an insulin-related peptide in the Pacific oyster and seasonal changes in the gene expression. J Endocrinol 187(1):55–67. doi:10.1677/joe.1.06284

    Article  PubMed  CAS  Google Scholar 

  • Hanke N, Meissner JD, Scheibe RJ, Endeward V, Gros G, Kubis HP (2008) Metabolic transformation of rabbit skeletal muscle cells in primary culture in response to low glucose. Biochim Biophys Acta 1783(5):813–825. doi:10.1016/j.bbamcr.2007.12.012

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546(1):113–120. doi:10.1016/s0014-5793(03)00560-x

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG (2004) The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci 117(Pt 23):5479–5487. doi:10.1242/jcs.01540

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Bio 8(10):774–785. doi:10.1038/Nrm2249

    Article  CAS  Google Scholar 

  • Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obesity 32(Suppl 4):7–12. doi:10.1038/ijo.2008.116

    Article  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855. doi:10.1146/annurev.biochem.67.1.821

    Article  PubMed  CAS  Google Scholar 

  • Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271(44):27879–27887. doi:10.1074/jbc.271.44.27879

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Hirshman MF, Fujii N, Habinowski SA, Witters LA, Goodyear LJ (2000) Metabolic stress and altered glucose transport—activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49(4):527–531. doi:10.2337/diabetes.49.4.527

    Article  PubMed  CAS  Google Scholar 

  • Heinonen J, Kukkonen J, Penttinen OP, Holopainen IJ (1997) Effects of hypoxia on valve-closure time and bioaccumulation of 2,4,5-trichlorophenol by the freshwater clam Sphaerium corneum [L]. Ecotoxicol Environ Saf 36(1):49–56. doi:10.1006/eesa.1996.1486

    Article  PubMed  CAS  Google Scholar 

  • Hong NY, Cui ZG, Kang HK, Lee DH, Lee YK, Park DB (2012) p-Synephrine stimulates glucose consumption via AMPK in L6 skeletal muscle cells. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2012.01.085

  • Horie T, Ono K, Nagao K, Nishi H, Kinoshita M, Kawamura T, Wada H, Shimatsu A, Kita T, Hasegawa K (2008) Oxidative stress induces GLUT4 translocation by activation of P13-K/Akt and dual AMPK kinase in cardiac myocytes. J Cell Physiol 215(3):733–742. doi:10.1002/Jcp.21353

    Article  PubMed  CAS  Google Scholar 

  • Huvet A, Herpin A, Degremont L, Labreuche Y, Samain JF, Cunningham C (2004) The identification of genes from the oyster Crassostrea gigas that are differentially expressed in progeny exhibiting opposed susceptibility to summer mortality. Gene 343(1):211–220. doi:10.1016/j.gene.2004.09.008

    Google Scholar 

  • Ivanina AV, Froelich B, Williams T, Sokolov EP, Oliver JD, Sokolova IM (2011) Interactive effects of cadmium and hypoxia on metabolic responses and bacterial loads of eastern oysters Crassostrea virginica Gmelin. Chemosphere 82(3):377–389. doi:10.1016/j.chemosphere.2010.09.075

    Article  PubMed  CAS  Google Scholar 

  • Jibb LA, Richards JG (2008) AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish, Carassius auratus. J Exp Biol 211(Pt 19):3111–3122. doi:10.1242/jeb.019117

    Article  PubMed  CAS  Google Scholar 

  • Jost JA, Podolski SM, Frederich M (2012) Enhancing thermal tolerance by eliminating the pejus range: a comparative study with three decapod crustaceans. Mar Ecol Prog Ser 444:263–274. doi:10.3354/Meps09379

    Article  CAS  Google Scholar 

  • Jouaux A, Heude-Berthelin C, Sourdaine P, Blin JL, Mathieu M, Kellner K (2011) Identification of Ras, Pten and p70S6K homologs in the Pacific oyster Crassostrea gigas and diet control of insulin pathway. Gen Comp Endocrinol doi:10.1016/j.ygcen.2011.12.008

  • Kawabe S, Yokoyama Y (2011a) Novel isoforms of heat shock transcription factor 1 are induced by hypoxia in the Pacific oyster Crassostrea gigas. J Exp Zool A Ecol Genet Physiol 315(7):394–407. doi:10.1002/jez.685

    Article  PubMed  CAS  Google Scholar 

  • Kawabe S, Yokoyama Y (2011b) Role of hypoxia-inducible factor alpha in response to hypoxia and heat shock in the Pacific oyster Crassostrea gigas. Mar Biotechnol. doi:10.1007/s10126-011-9394-3

  • Khan T, Hixon JA, Stauffer JK, Lincoln E, Back TC, Brenner J, Lockett S, Nagashima K, Powell D, Wigginton JM (2006) Therapeutic modulation of Akt activity and antitumor efficacy of interleukin-12 against orthotopic murine neuroblastoma. J Natl Cancer Inst 98(3):190–202. doi:10.1093/jnci/djj021

    Article  PubMed  CAS  Google Scholar 

  • Kim TR, Cho EW, Paik SG, Kim IG (2012) Hypoxia-induced SM22alpha in A549 cells activates the IGF1R/PI3K/Akt pathway, conferring cellular resistance against chemo- and radiation therapy. FEBS Lett doi:10.1016/j.febslet.2011.12.036

  • Kovacic S, Soltys CLM, Barr AJ, Shiojima I, Walsh K, Dyck JRB (2003) Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J Biol Chem 278(41):39422–39427. doi:10.1074/jbc.M305371200

    Article  PubMed  CAS  Google Scholar 

  • Le Moullac G (2008) Adaptation du métabolisme respiratoire de l’huître creuse Crassostrea gigas. Thèse de doctorat Université de Bretagne Occidentale, 161

  • Le Moullac G, Bacca H, Huvet A, Moal J, Pouvreau S, Van Wormhoudt A (2007a) Transcriptional regulation of pyruvate kinase and phosphoenolpyruvate carboxykinase in the adductor muscle of the oyster Crassostrea gigas during prolonged hypoxia. J Exp Zool A Ecol Genet Physiol 307(7):371–382. doi:10.1002/jez.390

    Article  PubMed  Google Scholar 

  • Le Moullac G, Quéau I, Le Souchu P, Pouvreau S, Moal J, Le Coz JR, Samain JF (2007b) Metabolic adjustments in the oyster Crassostrea gigas according to oxygen level and temperature. Mar Biol Res 3(5):357–366. doi:10.1080/17451000701635128

    Google Scholar 

  • Letunic I, Doerks T, Bork P (2011) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. doi:10.1093/nar/gkr931

  • Manley AR (1983) The effects of copper on the behavior, respiration, filtration and ventilation activity of Mytilus Edulis. J Mar Biol Assoc UK 63(1):205–222

    Article  CAS  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi:10.1016/j.cell.2007.06.009

    Article  PubMed  CAS  Google Scholar 

  • Mitchelhill KI, Michell BJ, House CM, Stapleton D, Dyck J, Gamble J, Ullrich C, Witters LA, Kemp BE (1997) Posttranslational modifications of the 5′-AMP-activated protein kinase beta1 subunit. J Biol Chem 272(39):24475–24479. doi:10.1074/jbc.272.39.24475

    Article  PubMed  CAS  Google Scholar 

  • Mu J, Brozinick JT Jr, Valladares O, Bucan M, Birnbaum MJ (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7(5):1085–1094. doi:10.1016/S1097-2765(01)00251-9

    Article  PubMed  CAS  Google Scholar 

  • Mullonkal CJ, Toledo-Pereyra LH (2007) Akt in ischemia and reperfusion. J Invest Surg Off J Acad Surg Res 20(3):195–203. doi:10.1080/08941930701366471

    Article  Google Scholar 

  • Musi N, Goodyear LJ (2003) AMP-activated protein kinase and muscle glucose uptake. Acta Physiol Scand 178(4):337–345. doi:10.1046/j.1365-201X.2003.01168.x

    Article  PubMed  CAS  Google Scholar 

  • Neumann D (2003) Mammalian AMP-activated protein kinase: functional, heterotrimeric complexes by co-expression of subunits in Escherichia coli. Protein Expr Purif 30(2):230–237. doi:10.1016/s1046-5928(03)00126-8

    Article  PubMed  CAS  Google Scholar 

  • Newell RC (1979) Biology of intertidal animals. Mar Ecol Surveys Ltd., Kent

  • Noy P, Sawasdichai A, Jayaraman PS, Gaston K (2012) Protein kinase CK2 inactivates PRH/Hhex using multiple mechanisms to de-repress VEGF-signalling genes and promote cell survival. Nucleic Acids Res. doi:10.1093/nar/gks687

  • Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA (2008) PKB and the mitochondria: AKTing on apoptosis. Cell Signal 20(1):21–30. doi:10.1016/j.cellsig.2007.07.010

    Article  PubMed  CAS  Google Scholar 

  • Pernet F, Barret J, Gall PL, Corporeau C, Dégremont L, Lagarde F, Pépin JF, Keck N (2012) Mass mortalities of Pacific oysters Crassostrea gigas reflect infectious diseases and vary with farming practises in the Thau lagoon. Aquac Environ Interact. doi:10.3354/aei00041

  • Pichavant K, Person-Le-Ruyet J, Le Bayon N, Sévère A, Le Roux A, Quéméner L, Maxime V, Nonnotte G, Boeuf G (2000) Effects of hypoxia on growth and metabolism of juvenile turbot. Aquaculture 188(1–2):103–114. doi:10.1016/s0044-8486(00)00316-1

    Article  Google Scholar 

  • Pinz I, Perry DJ, Frederich M (2005) Activation of 5′-AMP activated protein kinase during anaerobiosis in the rock crab, Cancer irroratus. Bull Mt Desert Isl Biol Lab 44:31–32

    Google Scholar 

  • Ramanathan L, Sheth PR, Ogas P, Xiao L, Le HV (2010) Purification and characterization of truncated human AMPK alpha 2 beta 2 gamma 3 heterotrimer from baculovirus-infected insect cells. Protein Expr Purif 70(1):13–22. doi:10.1016/j.pep.2009.10.007

    Article  PubMed  CAS  Google Scholar 

  • Ramnanan CJ, McMullen DC, Groom AG, Storey KB (2010) The regulation of AMPK signaling in a natural state of profound metabolic rate depression. Mol Cell Biochem 335(1–2):91–105. doi:10.1007/s11010-009-0246-7

    Article  PubMed  CAS  Google Scholar 

  • Rodet F, Lelong C, Dubos MP, Favrel P (2008) Alternative splicing of a single precursor mRNA generates two subtypes of gonadotropin-releasing hormone receptor orthologues and their variants in the bivalve mollusc Crassostrea gigas. Gene 414(1–2):1–9. doi:10.1016/j.gene.2008.01.022

    Article  PubMed  CAS  Google Scholar 

  • Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM (2012) A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151(6):1319–1331. doi:10.1016/j.cell.2012.10.050

    Article  PubMed  CAS  Google Scholar 

  • Saha AK, Schwarsin AJ, Roduit R, Masse F, Kaushik V, Tornheim K, Prentki M, Ruderman NB (2000) Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside. J Biol Chem 275(32):24279–24283. doi:10.1074/jbc.C000291200

    Article  PubMed  CAS  Google Scholar 

  • Samain JF, McCombie H (2008) Summer mortality of Pacific oyster Crassostrea gigas. The morest project. Edition Ifremer Quae

  • Sato T, Toyoshima A, Hiraki T, Ohta Y, Katayama K, Arai T, Tazaki H (2011) Effects of metformin on plasma concentrations of glucose and mannose, G6Pase and PEPCK activity, and mRNA expression in the liver and kidney of chickens. Br Poult Sci 52(2):273–277. doi:10.1080/00071668.2011.560595

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95(11):5857–5864

    Article  PubMed  CAS  Google Scholar 

  • Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, House CM, Fernandez CS, Cox T, Witters LA, Kemp BE (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271(2):611–614. doi:10.1074/jbc.271.2.611

    Google Scholar 

  • Stenslokken KO, Ellefsen S, Stecyk JA, Dahl MB, Nilsson GE, Vaage J (2008) Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius). Am J Physiol Regul Integr Comp Physiol 295(6):1803–1814. doi:10.1152/ajpregu.90590.2008

    Article  Google Scholar 

  • Storey KB (1993) Molecular mechanisms of metabolic arrest in molluscs. In: Surviving hypoxia: mechanisms of control and adaptation. CRC Press, Boca Raton, pp 253–269

  • Stricker SA (2011) Potential upstream regulators and downstream targets of AMP-activated kinase signaling during oocyte maturation in a marine worm. Reproduction 142(1):29–39. doi:10.1530/Rep-10-0509

    Article  PubMed  CAS  Google Scholar 

  • Stricker SA, Swiderek L, Nguyen T (2010) Stimulators of AMP-activated kinase (AMPK) inhibit seawater- but not cAMP-induced oocyte maturation in a marine worm: implications for interactions between cAMP and AMPK signaling. Mol Reprod Dev 77(6):497–510. doi:10.1002/mrd.21177

    Article  PubMed  CAS  Google Scholar 

  • Sung JY, Woo CH, Kang YJ, Lee KY, Choi HC (2011) AMPK induces vascular smooth muscle cell senescence via LKB1 dependent pathway. Biochem Biophys Res Commun 413(1):143–148. doi:10.1016/j.bbrc.2011.08.071

    Article  PubMed  CAS  Google Scholar 

  • Sussarellu R, Fabioux C, Le Moullac G, Fleury E, Moraga D (2010) Transcriptomic response of the Pacific oyster Crassostrea gigas to hypoxia. Mar Genomics 3(3–4):133–143. doi:10.1016/j.margen.2010.08.005

    Article  PubMed  Google Scholar 

  • Sussarellu R, Fabioux C, Le Goic N, Lambert C, Soudant P, Moraga D (2011) Molecular and cellular response to short-term oxygen variations in the Pacific oyster Crassostrea gigas. J Exp Mar Biol Ecol 412:87–95. doi:10.1016/j.jembe.2011.11.007

    Article  Google Scholar 

  • Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T, Neumann D (2006) Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem 281(43):32207–32216. doi:10.1074/jbc.M606357200

    Article  PubMed  CAS  Google Scholar 

  • Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100(3):328–341. doi:10.1161/01.RES.0000256090.42690.05

    Article  PubMed  CAS  Google Scholar 

  • Tran D, Boudou A, Massabuau JC (2000) Mechanism for maintaining oxygen consumption under varying oxygenation levels in the freshwater clam Corbicula fluminea. Can J Zool 78(11):2027–2036. doi:10.1139/cjz-78-11-2027

    Google Scholar 

  • Tripathi G, Verma P (2004) Sex-specific metabolic changes in the annual reproductive cycle of a freshwater catfish. Comp Biochem Physiol B Biochem Mol Biol 137(1):101–106. doi:10.1016/j.cbpc.2003.10.005

    Article  PubMed  CAS  Google Scholar 

  • Viollet B, Andreelli F, Jorgensen SB, Perrin C, Flamez D, Mu J, Wojtaszewski JF, Schuit FC, Birnbaum M, Richter E, Burcelin R, Vaulont S (2003) Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochem Soc Trans 31(Pt 1):216–219. doi:10.1042/

    PubMed  CAS  Google Scholar 

  • Wadley GD, Lee-Young RS, Canny BJ, Wasuntarawat C, Chen ZP, Hargreaves M, Kemp BE, McConell GK (2006) Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. Am J Physiol Endocrinol Metab 290(4):E694–E702. doi:10.1152/ajpendo.00464.2005

    Article  PubMed  CAS  Google Scholar 

  • Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D, Rider MH (2003) Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem 278(31):28434–28442. doi:10.1074/jbc.M303946200

    Article  PubMed  CAS  Google Scholar 

  • Wu RSS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45(1–12):35–45. doi:10.1016/S0025-326X(02)00061-9

    Article  PubMed  CAS  Google Scholar 

  • Yook K, Harris TW, Bieri T, Cabunoc A, Chan J, Chen WJ, Davis P, de la Cruz N, Duong A, Fang R, Ganesan U, Grove C, Howe K, Kadam S, Kishore R, Lee R, Li Y, Muller HM, Nakamura C, Nash B, Ozersky P, Paulini M, Raciti D, Rangarajan A, Schindelman G, Shi X, Schwarz EM, Ann Tuli M, Van Auken K, Wang D, Wang X, Williams G, Hodgkin J, Berriman M, Durbin R, Kersey P, Spieth J, Stein L, Sternberg PW (2012) WormBase 2012: more genomes, more data, new website. Nucleic Acids Res 40 (Database issue):735–741. doi:10.1093/nar/gkr954

  • Yoshida EN, Benkel BF, Fong Y, Hickey DA (1999) Sequence and phylogenetic analysis of the SNF4/AMPK gamma subunit gene from Drosophila melanogaster. Genome 42(6):1077–1087

    PubMed  CAS  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Loso T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang Q, Steinberg CE, Wang H, Qian L, Liu X, Yin Y (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490(7418):49–54. doi:10.1038/nature11413

    Article  PubMed  CAS  Google Scholar 

  • Zhu XJ, Feng CZ, Dai ZM, Zhang RC, Yang WJ (2007) AMPK alpha subunit gene characterization in artemia and expression during development and in response to stress. Stress 10(1):53–63. doi:10.1080/10253890601130773

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present research project was supported by “Europole Mer” (www.europolemer.eu; project “OxyGenes”) and by the ANR (project “Gametogenes” ANR-08-GENM-041) with collaboration supported National Basic Research Program of China (973 Program, no. 2010CB126401). Eric Guévélou was funded by Ifremer and a Région Bretagne doctoral grant. Genome information collected for this publication was obtained upon the support provided by the Ministry of Foreign Affairs (MAE). The authors are grateful to Karine Pichavant of the ORPHY laboratory for logistic support, the organization of the experimental hypoxic system and for technical support during the animal conditioning. The authors are indebted to Chantal Cahu for advice and support. We thank Helen McCombie for her help with editing the English.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Corporeau.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guévélou, E., Huvet, A., Sussarellu, R. et al. Regulation of a truncated isoform of AMP-activated protein kinase α (AMPKα) in response to hypoxia in the muscle of Pacific oyster Crassostrea gigas . J Comp Physiol B 183, 597–611 (2013). https://doi.org/10.1007/s00360-013-0743-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0743-6

Keywords

Navigation