Skip to main content
Log in

Changes in diet, body mass and fatty acid composition during pre-hibernation in a subtropical bat in relation to NPY and AgRP expression

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Prior to hibernation, mammals accumulate large amounts of fat in their bodies. In temperate mammalian species, hibernation is improved by increasing the levels of poly-unsaturated fatty acids (PUFA) in the body. The saturation of fatty acids (FA) in both white adipose tissue (WAT) and membrane phospholipids of mammals often reflects their diet composition. We found that the greater mouse-tailed bat (Rhinopoma microphyllum) accumulates large amounts of fat at the end of summer by gradually shifting to a fat-rich diet (queen carpenter ants, Camponotus felah). PUFA are almost absent in this diet (<1 % of total FA), which contains a high fraction of saturated (SFA) and mono-unsaturated (MUFA) fatty acids. We found similar low levels of PUFA in mouse-tailed bat WAT, but not in their heart total lipids. The expression of two appetite-stimulating (orexigenic) hypothalamic neuropeptides, AgRP and NPY, increased in parallel to the shift in diet and with fat gain in these bats. To the best of our knowledge, this is the only documented example of specific pre-hibernation diet in bats, and one which reveals the most saturated FA composition ever documented in a mammal. We suggest that the increase in expression levels of NPY and AgRP may contribute to the observed diet shift and mass gain, and that the FA composition of the bat’s specialized diet is adaptive in the relatively high temperatures we recorded in both their winter and summer roosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437

    Article  PubMed  CAS  Google Scholar 

  • Ammar AA, Nergardh R, Fredholm BB, Brodin U, Sodersten P (2005) Intake inhibition by NPY and CCK-8: a challenge of the notion of NPY as an “Orexigen”. Behav Brain Res 161:82–87

    Article  PubMed  CAS  Google Scholar 

  • Arnold W, Ruf T, Frey-Roos F, Bruns U (2011) Diet-independent remodeling of cellular membranes precedes seasonally changing body temperature in a hibernator. PLoS One 6:e18641

    Article  PubMed  CAS  Google Scholar 

  • Bairlein F (1987) Adaptations of feeding physiology for fat deposition in garden warblers. Journal Fur Ornithologie 128:381–382

    Google Scholar 

  • Bairlein F, Gwinner E (1994) Nutritional mechanisms and temporal control of migratory energy accumulation in birds. Annu Rev Nutr 14:187–215

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Udin S, Krishna A (2011) Regulation of leptin synthesis in white adipose tissue of the female fruit bat, Cynopterus sphinx: role of melatonin with or without insulin. Exp Physiol 96:216–225

    PubMed  CAS  Google Scholar 

  • Barnes MJ, Argyropoulos G, Bray GA (2010) Preference for a high fat diet, but not hyperphagia following activation of mu opioid receptors is blocked in AgRP knockout mice. Brain Res 1317:100–107

    Article  PubMed  CAS  Google Scholar 

  • Bat Conservation Trust (2010) The noctule bat. http://www.bats.org.uk

  • Ben-Hamo M, McCue M, McWilliams S, Pinshow B (2011) Dietary fatty acid composition influences tissue lipid profiles and regulation of body temperature in Japanese quail. J Comp Physiol B Biochem Syst Environ Physiol 1–10

  • Brown JCL, Chung DJ, Belgrave KR, Staples JF (2011) Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. Am J Physiol Regul Integr Comp Physiol 302:R15–R28

    Article  PubMed  Google Scholar 

  • Carey HV, Frank CL, Seifert JP (2000) Hibernation induces oxidative stress and activation of NF-kappa B in ground squirrel intestine. J Comp Physiol B Biochem Syst Environ Physiol 170:551–559

    Article  CAS  Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    PubMed  CAS  Google Scholar 

  • Cartland-Shaw LK, Cree A, Skeaff CM, Grimmond NM (1998) Differences in dietary and plasma fatty acids between wild and captive populations of a rare reptile, the tuatara (Sphenodon punctatus). J Comp Physiol B 168:569–580

    Article  CAS  Google Scholar 

  • Clarke IJ, Rao A, Chilliard Y, Delavaud C, Lincoln GA (2003) Photoperiod effects on gene expression for hypothalamic appetite-regulating peptides and food intake in the ram. Am J Physiol Regul Integr Comp Physiol 284:R101–R115

    PubMed  CAS  Google Scholar 

  • Dark J (2005) Annual lipid cycles in hibernators: integration of physiology and behavior. Annu Rev Nutr 25:469–497

    Article  PubMed  CAS  Google Scholar 

  • Day DE, Keen-Rhinehart E, Bartness TJ (2005) Role of NPY and its receptor subtypes in foraging, food hoarding, and food intake by Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 289:R29–R36

    Article  PubMed  CAS  Google Scholar 

  • Diez A, Menoyo D, Perez-Benavente S, Calduch-Giner JA, de Celis SVR, Obach A, Favre-Krey L, Boukouvala E, Leaver MJ, Tocher DR, Perez-Sanchez J, Krey G, Bautista JM (2007) Conjugated linoleic acid affects lipid composition, metabolism, and gene expression in Gilthead sea bream (Sparus aurata). J Nutr 137:1363–1369

    PubMed  CAS  Google Scholar 

  • Falkenstein F, Kortner G, Watson K, Geiser F (2001) Dietary fats and body lipid composition in relation to hibernation in free-ranging echidnas. J Comp Physiol B Biochem Syst Environ Physiol 171:189–194

    Article  CAS  Google Scholar 

  • Feldman R, Whitaker JO, Yom-Tov Y (2000) Dietary composition and habitat use in a desert insectivorous bat community in Israel. Acta Chiropterologica 2:15–22

    Google Scholar 

  • Fietz Tataruch, Dausmann Ganzhorn (2003) White adipose tissue composition in the free-ranging fat-tailed dwarf lemur (Cheirogaleus medius; Primates), a tropical hibernator. J Comp Physiol B 173:1–10

    PubMed  CAS  Google Scholar 

  • Florant GL (1998) Lipid metabolism in hibernators: the importance of essential fatty acids. Am Zool 38:331–340

    CAS  Google Scholar 

  • Frank CL, Dierenfeld ES, Storey KB (1998) The relationship between lipid peroxidation, hibernation, and food selection in mammals. Am Zool 38:341–349

    CAS  Google Scholar 

  • Friedman D, Haim A, Zisapel N (1997) Temporal segregation in coexisting spiny mice (genus Acomys): role of photoperiod and heterospecific odor. Physiol Behav 62:407–411

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Mcallan BM, Kenagy GJ (1994) The degree of dietary fatty-acid unsaturation affects torpor patterns and lipid-composition of a hibernator. J Comp Physiol B Biochem Syst Environ Physiol 164:299–305

    Article  CAS  Google Scholar 

  • Giroud S, Perret M, Gilbert C, Zahariev A, Goudable J, Le Maho Y, Oudart H, Momken I, Aujard F, Blanc S (2009) Dietary palmitate and linoleate oxidations, oxidative stress, and DNA damage differ according to season in mouse lemurs exposed to a chronic food deprivation. Am J Physiol Regul Integr Comp Physiol 297:R950–R959

    Article  PubMed  CAS  Google Scholar 

  • Gloor S, Stutz HPB, Ziswiler V (1995) Nutritional habits of the noctule bat Nycctalus noctula (Schreber, 1774) in Switzerland. Myotis 32:231–242

    Google Scholar 

  • Goiti U, Vecin P, Garin I, Saloña M, Aihartza J (2003) Diet and prey selection in Kuhl’s pipistrelle (Pipistrellus kuhlii, Chiroptera: vespertilionidae) in south-western Europe. Acta Theriologica 48:457–468

    Article  Google Scholar 

  • Gruninger T, LeBoeuf B, Liu Y, Rene Garcia L (2007) Molecular signaling involved in regulating feeding and other motivated behaviors. Mol Neurobiol 35:1–19

    Article  PubMed  CAS  Google Scholar 

  • Harlow HJ, Frank CL (2001) The role of dietary fatty acids in the evolution of spontaneous and facultative hibernation patterns in prairie dogs. J Comp Physiol B Biochem Syst Environ Physiol 171:77–84

    Article  CAS  Google Scholar 

  • Hiebert SM, Fulkerson EK, Lindermayer KT, McClure SD (2000) Effect of temperature on preference for dietary unsaturated fatty acids in the Djungarian hamster (Phodopus sungorus). Can J Zool 78:1361–1368

    CAS  Google Scholar 

  • Hiebert SM, Hauser K, Ebrahim AJ (2003) Djungarian hamsters exhibit temperature-dependent dietary fat choice in long days. Physiol Biochem Zool 76:850–857

    Article  PubMed  Google Scholar 

  • Hillebrand JJG, Kas MJH, Adan RAH (2006) To eat or not to eat; regulation by the melanocortin system. Physiol Behav 89:97–102

    Article  PubMed  CAS  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    Article  PubMed  CAS  Google Scholar 

  • Innis SM, Clandinin MT (1981) Dynamic modulation of mitochondrial inner-membrane lipids in rat heart by dietary fat. Biochem J 193:155–167

    PubMed  CAS  Google Scholar 

  • Krol E, Duncan JS, Redman P, Morgan PJ, Mercer JG, Speakman JR (2006) Photoperiod regulates leptin sensitivity in field voles, Microtus agrestis. J Comp Physiol B Biochem Syst Environ Physiol 176:153–163

    Article  CAS  Google Scholar 

  • Kronfeld-Schor N, Richardson C, Silvia BA, Kunz TH, Widmaier EP (2000a) Dissociation of leptin secretion and adiposity during prehibernatory fattening in little brown bats. Am J Physiol Regul Integr Comp Physiol 279:R1277–R1281

    PubMed  CAS  Google Scholar 

  • Kronfeld-Schor N, Zhao J, Silvia BA, Bicer E, Mathews PT, Urban R, Zimmerman S, Kunz TH, Widmaier EP (2000b) Steroid-dependent up-regulation of adipose leptin secretion in vitro during pregnancy in mice. Biol Reprod 63:274–280

    Article  PubMed  CAS  Google Scholar 

  • Levin E, Yom-Tov Y, Barnea A (2009) Frequent summer nuptial flights of ants provide a primary food source for bats. Naturwissenschaften 96:477–483

    Article  PubMed  CAS  Google Scholar 

  • Levin E, Ar A, Hefetz A, Yom-Tov Y, Kronfeld-Schor N (2010) Some like it hot: hibernation patterns of the greater mouse-tailed bat (Rhinopomamicrophyllum). In: 27th Annual Meeting, Australian and New Zealand Society for Comparative Physiology and Biochemistry, Australian National University, Canberra, 3–5 December, Abstracts, p 26

  • Luo N, Marcelin G, Liu SM, Schwartz G, Chua S (2011) Neuropeptide Y and Agouti-related peptide mediate complementary functions of hyperphagia and reduced energy expenditure in leptin receptor deficiency. Endocrinology 152:883–889

    Article  PubMed  CAS  Google Scholar 

  • Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310:683–685

    Article  PubMed  CAS  Google Scholar 

  • Orr AL, Lohse LA, Drew KL, Hermes-Lima M (2009) Physiological oxidative stress after arousal from hibernation in Arctic ground squirrel. Comp Biochem Physiol A Mol Integr Physiol 153:213–221

    Article  PubMed  Google Scholar 

  • Pamplona R (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochimica Et Biophysica Acta Bioenergetics 1777:1249–1262

    Article  CAS  Google Scholar 

  • Pamplona R, Portero-Otin M, Ruiz C, Gredilla R, Herrero A, Barja G (2000) Double bond content of phospholipids and lipid peroxidation negatively correlate with maximum longevity in the heart of mammals. Mech Ageing Dev 112:169–183

    Article  PubMed  CAS  Google Scholar 

  • Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385

    Article  PubMed  CAS  Google Scholar 

  • Redford KH, Dorea JG (1984) The nutritional value of invertebrates with emphasis on ants and termites as food for mammals. J Zool 203:385–395

    Article  CAS  Google Scholar 

  • Rousseau K, Atcha Z, Loudon ASI (2003) Leptin and seasonal mammals. J Neuroendocrinol 15:409–414

    Article  PubMed  CAS  Google Scholar 

  • Ruf T, Arnold W (2008) Effects of polyunsaturated fatty acids on hibernation and torpor: a review and hypothesis. Am J Physiol Regul Integr Comp Physiol 294:R1044–R1052

    Article  PubMed  CAS  Google Scholar 

  • Rule DC (1997) Direct transesterification of total fatty acids of adipose tissue, and of freeze-dried muscle and liver with boron-trifluoride in methanol. Meat Sci 46:23–32

    Article  PubMed  CAS  Google Scholar 

  • Sailer MM, Fietz J (2009) Seasonal differences in the feeding ecology and behavior of male edible dormice (Glis glis). Mammalian Biol 74:114–124

    Article  Google Scholar 

  • Singh UP, Krishna A, Bhatnagar KP (2007) Year round plasma leptin and androgen concentrations in a tropical bat. Acta Theriologica 52:129–140

    Article  Google Scholar 

  • Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. Cell 104:531–543

    Article  PubMed  CAS  Google Scholar 

  • Srivastava RK, Krishna A (2007) Adiposity associated rise in leptin impairs ovarian activity during winter dormancy in Vespertilionid bat, Scotophilus heathi. Reproduction 133:165–176

    Article  PubMed  CAS  Google Scholar 

  • Swoap SJ (2008) Why one enters torpor: focus on “NPY Y1 receptor antagonist prevents NPY-induced torpor-like hypothermia in cold-acclimated Siberian hamsters”. Am J Physiol Regul Integr Comp Physiol 294:R234–R235

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Matsuo T, Tokuyama K, Shimomura Y, Suzuki M (1995) Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic-acid safflower oil diet, a safflower oil diet or a linseed oil diet. J Nutr 125:920–925

    PubMed  CAS  Google Scholar 

  • Tevis L (1953) Stomach contents of chipmunks and mantled squirrels in northeastern California. J Mammal 34:316–324

    Article  Google Scholar 

  • Townsend KL, Kunz TH, Widmaier EP (2008) Changes in body mass, serum leptin, and mRNA levels of leptin receptor isoforms during the premigratory period in Myotis lucifugus. J Comp Physiol B Biochem Syst Environ Physiol 178:217–223

    Article  CAS  Google Scholar 

  • Tups A (2009) Physiological models of leptin resistance. J Neuroendocrinol 21:961–971

    Article  PubMed  CAS  Google Scholar 

  • Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27:467–473

    Article  PubMed  CAS  Google Scholar 

  • Whitaker JOJ (1988) Food habit and analysis of insectevorous bats. In: Kunz TH (ed) Echological and behavioral methods for the study of bats. Smithsonian Institute, Washington, DC, pp 171–189

    Google Scholar 

  • White JD (1993) Neuropeptide Y a central regulator of energy homeostasis. Regul Pept 49:93–107

    Article  PubMed  CAS  Google Scholar 

  • Widmaier E, Long J, Cadigan B, Gurgel S, Kunz T (1997) Leptin, corticotropin-releasing hormone (CRH), and neuropeptide Y (NPY) in free-ranging pregnant bats. Endocrine 7:145–150

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Ma B, Zhou L, Wang H, Xu J, Kemmitt S, Brookes PC (2003) Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Appl Soil Ecol 43:234–240

    Article  Google Scholar 

  • Young RA (1976) Fat, Energy and mammalian survival. Am Zool 16:699–710

    Google Scholar 

Download references

Acknowledgments

We would like to thank Yotam Shenaar, Rotem Cohen-Paz, Orly Barak, Osnat Malka, and Tovit Simon for help with the laboratory work; Luzie Braulke for reading and comments on the manuscript; and Naomi Paz for editing the manuscript. This research was supported by The Israel Science Foundation (Grant No. 232/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran Levin.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, E., Yom-Tov, Y., Hefetz, A. et al. Changes in diet, body mass and fatty acid composition during pre-hibernation in a subtropical bat in relation to NPY and AgRP expression. J Comp Physiol B 183, 157–166 (2013). https://doi.org/10.1007/s00360-012-0689-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0689-0

Keywords

Navigation