Skip to main content
Log in

Determinants of inter-specific variation in basal metabolic rate

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Basal metabolic rate (BMR) is the rate of metabolism of a resting, postabsorptive, non-reproductive, adult bird or mammal, measured during the inactive circadian phase at a thermoneutral temperature. BMR is one of the most widely measured physiological traits, and data are available for over 1,200 species. With data available for such a wide range of species, BMR is a benchmark measurement in ecological and evolutionary physiology, and is often used as a reference against which other levels of metabolism are compared. Implicit in such comparisons is the assumption that BMR is invariant for a given species and that it therefore represents a stable point of comparison. However, BMR shows substantial variation between individuals, populations and species. Investigation of the ultimate (evolutionary) explanations for these differences remains an active area of inquiry, and explanation of size-related trends remains a contentious area. Whereas explanations for the scaling of BMR are generally mechanistic and claim ties to the first principles of chemistry and physics, investigations of mass-independent variation typically take an evolutionary perspective and have demonstrated that BMR is ultimately linked with a range of extrinsic variables including diet, habitat temperature, and net primary productivity. Here we review explanations for size-related and mass-independent variation in the BMR of animals, and suggest ways that the various explanations can be evaluated and integrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2002) Metabolic cold adaptation in insects: a large-scale perspective. Funct Ecol 16:332–338

    Article  Google Scholar 

  • Agutter PS, Tuszynski JA (2011) Analytic theories of allometric scaling. J Exp Biol 214:1055–1062

    Article  PubMed  Google Scholar 

  • Agutter PS, Wheatley DN (2004) Metabolic scaling: consensus or controversy? Theoretical Biology and Medical Modelling 1:13 (http://www.tbiomed.com/content/11/11/13)

  • Åkerlund G (1969) Oxygen consumption of the ampullariid snail Marisa cornuarietis L. in relation to body weight and temperature. Oikos 20:529–533

    Article  Google Scholar 

  • Algar AC, Kerr JT, Currie DJ (2007) A test of Metabolic Theory as the mechanism underlying broad-scale species-richness gradients. Glob Ecol Biogeogr 16:170–178

    Article  Google Scholar 

  • Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:1545–1548

    Article  PubMed  CAS  Google Scholar 

  • Anderson KJ, Jetz W (2005) The broad-scale ecology of energy expenditure of endotherms. Ecol Lett 8:310–318

    Article  Google Scholar 

  • Artacho P, Nespolo RF (2009) Natural selection reduces energy metabolism in the garden snail, Helix aspersa (Cornu aspersum). Evolution 63:1044–1050

    Article  PubMed  CAS  Google Scholar 

  • Artacho P, Castañeda LE, Nespolo RF (2005) The role of quantitative genetic studies in animal physiological ecology. Rev Chil Hist Nat 78:161–167

    Article  Google Scholar 

  • Atkinson HJ (1973) The respiratory physiology of the marine nematodes Enoplus Brevis (Bastian) and E. Communis (Bastian). J Exp Biol 59:255–266

    CAS  Google Scholar 

  • Bacigalupe LD, Nespolo RF, Bustamante DM, Bozinovic F (2004) The quantitative genetics of sustained energy budget in a wild mouse. Evolution 58:421–429

    PubMed  Google Scholar 

  • Banavar JR, Maritan A, Rinaldo A (1999) Size and form in efficient transportation networks. Nature 399:130–131

    Article  PubMed  CAS  Google Scholar 

  • Banavar JR, Maritan A, Rinaldo A (2000) Rivers, blood and transportation networks—reply. Nature 408:160

    Article  CAS  Google Scholar 

  • Banavar JR, Damuth J, Maritan A, Rinaldo A (2002a) Modelling universality and scaling. Nature 420:626

    Article  PubMed  CAS  Google Scholar 

  • Banavar JR, Damuth J, Maritan A, Rinaldo A (2002b) Supply-demand balance and metabolic scaling. Proc Natl Acad Sci USA 99:10506–10509

    Article  PubMed  CAS  Google Scholar 

  • Banavar JR, Damuth J, Maritan A, Rinaldo A (2003) Allometric cascades. Nature 421:713–714

    Article  PubMed  CAS  Google Scholar 

  • Banavar JR, Moses ME, Brown JH, Damuth J, Rinaldo A, Sibly RM, Maritan A (2010) A general basis for quarter-power scaling in animals. Proc Natl Acad Sci USA 107:15816–15820

    Article  PubMed  CAS  Google Scholar 

  • Batterham AM, Jackson AS (2003) Validity of the allometric cascade model at submaximal and maximal metabolic rates in exercising men. Respir Physiol Neurobiol 135:103–106

    Article  PubMed  Google Scholar 

  • Batterham AM, Jackson AS (2005) Authors’ response. Respir Physiol Neurobiol 146:3–4

    Article  Google Scholar 

  • Bejan A (2000) Shape and structure, from engineering to nature. Cambridge University Press, Cambridge

    Google Scholar 

  • Bejan A (2005) The constructal law of organization in nature: tree-shaped flows and body size. J Exp Biol 208:1677–1686

    Article  PubMed  Google Scholar 

  • Benedict FG (1938) Vital energetics: a study in comparative basal metabolism. Carnegie Institution of Washington, Washington, DC

    Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  PubMed  CAS  Google Scholar 

  • Biro PA, Stamps JA (2010) Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends Ecol Evol 25:653–659

    Article  PubMed  Google Scholar 

  • Bishop CM (1999) The maximum oxygen consumption and aerobic scope of birds and mammals: Getting to the heart of the matter. Proc R Soc Lond Ser B Biol Sci 266:2275–2281

    Article  CAS  Google Scholar 

  • Blackburn TM, Gaston KJ (1994) The distribution of body sizes of the worlds bird species. Oikos 70:127–130

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ (1998) The distribution of mammal body masses. Divers Distrib 4:121–133

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ (1999) The relationship between animal abundance and body size: a review of the mechanisms. Adv Ecol Res 28:181–210

    Google Scholar 

  • Blackmer AL, Mauck RA, Ackerman JT, Huntington CE, Nevitt GA, Williams JB (2005) Exploring individual quality: basal metabolic rate and reproductive performance in storm-petrels. Behav Ecol 16:906–913

    Article  Google Scholar 

  • Boily P (2002) Individual variation in metabolic traits of wild nine-banded armadillos (Dasypus novemcinctus), and the aerobic capacity model for the evolution of endothermy. J Exp Biol 205:3207–3214

    PubMed  Google Scholar 

  • Bokma F (2004) Evidence against universal metabolic allometry. Funct Ecol 18:184–187

    Article  Google Scholar 

  • Boratyński Z, Koteja P (2009) The association between body mass, metabolic rates and survival of bank voles. Funct Ecol 23:330–339

    Article  Google Scholar 

  • Boratyński Z, Koteja P (2010) Sexual and natural selection on body mass and metabolic rates in free-living bank voles. Funct Ecol 24:1252–1261

    Article  Google Scholar 

  • Boratyński Z, Koskela E, Mappes T, Oksanen TA (2010) Sex-specific selection on energy metabolism—selection coefficients for winter survival. J Evol Biol 23:1969–1978

    Article  PubMed  Google Scholar 

  • Bouwhuis S, Sheldon BC, Verhulst S (2011) Basal metabolic rate and the rate of senescence in the great tit. Funct Ecol 25:829–838

    Google Scholar 

  • Bozinovic F, Muñoz JLP, Cruz-Neto AP (2007) Intraspecific variability in the basal metabolic rate: testing the food habits hypothesis. Physiol Biochem Zool 80:452–460

    Article  PubMed  Google Scholar 

  • Bozinovic F, Rojas JM, Broitman BR, Vásquez RA (2009) Basal metabolism is correlated with habitat productivity among populations of degus (Octodon degus). Comp Biochem Physiol A 152:560–564

    Article  CAS  Google Scholar 

  • Brody S (1945) Bioenergetics and growth. Reinhold Publishing Corporation, New York

    Google Scholar 

  • Broggi J, Hohtola E, Koivula K, Orell M, Thomson RL, Nilsson J-Å (2007) Sources of variation in winter basal metabolic rate in the great tit. Funct Ecol 21:528–533

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004a) Response to forum commentary on “toward a metabolic theory of ecology”. Ecology 85:1818–1821

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004b) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Brown JH, West GB, Enquist BJ (2005) Yes, West, Brown and Enquist’s model of allometric scaling is both mathematically correct and biologically relevant. Funct Ecol 19:735–738

    Article  Google Scholar 

  • Brzęk P, Bielawska K, Książek A, Konarzewski M (2007) Anatomic and molecular correlates of divergent selection for basal metabolic rate in laboratory mice. Physiol Biochem Zool 80:491–499

    Google Scholar 

  • Buckley LB, Rodda GH, Jetz W (2008) Thermal and energetic constraints on ectotherm abundance: a global test using lizards. Ecology 89:48–55

    Article  PubMed  Google Scholar 

  • Buikema AL Jr (1972) Oxygen consumption of the cladoceran, Daphnia pulex, as a function of body size, light and light acclimation. Comp Biochem Physiol A 42:877–888

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2001) Kullback-Leibler information as a basis for strong inference in ecological studies. Wildl Res 28:111–119

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Burrin DG, Ferrell CL, Eisemann JH, Britton RA, Nienaber JA (1989) Effect of level of nutrition on splanchnic blood flow and oxygen consumption in sheep. Br J Nutr 62:23–34

    Article  PubMed  CAS  Google Scholar 

  • Burton T, Killen SS, Armstrong JD, Metcalfe NB (2011) What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc R Soc B Biol Sci 278:3465–3473

    Article  CAS  Google Scholar 

  • Bushuev A, Kerimov A, Ivankina E (2011) Estimation of heritability and repeatability of resting metabolic rate in birds by the example of free-living pied flycatchers Ficedula hypoleuca (Aves: Passeriformes). Biol Bull Rev 1:26–46

    Article  Google Scholar 

  • Calder WA III (1984) Size, function, and life history. Harvard University Press, Cambridge

    Google Scholar 

  • Capellini I, Venditti C, Barton RA (2010) Phylogeny and metabolic scaling in mammals. Ecology 91:2783–2793

    Article  PubMed  Google Scholar 

  • Careau V, Morand-Ferron J, Thomas D (2007) Basal metabolic rate of canidae from hot deserts to cold arctic climates. J Mammal 88:394–400

    Article  Google Scholar 

  • Careau V, Thomas D, Pelletier F, Turki L, Landry F, Garant D, Réale D (2011) Genetic correlation between resting metabolic rate and exploratory behaviour in deer mice (Peromyscus maniculatus). J Evol Biol 24:2153–2163

    Article  PubMed  CAS  Google Scholar 

  • Cavieres G, Sabat P (2008) Geographic variation in the response to thermal acclimation in rufous-collared sparrows: are physiological flexibility and environmental heterogeneity correlated? Funct Ecol 22:509–515

    Article  Google Scholar 

  • Chappell MA, Bachman GC (1995) Aerobic performance in Belding’s ground squirrels (Spermophilus beldingi): variance, ontogeny, and the aerobic capacity model of endothermy. Physiol Zool 68:421–442

    Google Scholar 

  • Chappell MA, Bech C, Buttemer WA (1999) The relationship of central and peripheral organ masses to aerobic performance variation in house sparrows. J Exp Biol 202:2269–2279

    PubMed  Google Scholar 

  • Chappell MA, Garland T Jr, Robertson G, Saltzman W (2007) Relationships among running performance, aerobic physiology and organ mass in male Mongolian gerbils. J Exp Biol 210:4179–4197

    Article  PubMed  Google Scholar 

  • Chaui-Berlinck JG (2006) A critical understanding of the fractal model of metabolic scaling. J Exp Biol 209:3045–3054

    Article  PubMed  Google Scholar 

  • Chaui-Berlinck JG (2007) Response to ‘Comment on “A critical understanding of the fractal model of metabolic scaling”’. J Exp Biol 210:3875–3876

    Article  Google Scholar 

  • Chen X, Li B-L (2003) Testing the allometric scaling relationships with seedlings of two tree species. Acta Oecol 24:125–129

    Article  Google Scholar 

  • Chown SL, Marais E, Terblanche JS, Klok CJ, Lighton JRB, Blackburn TM (2007) Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct Ecol 21:282–290

    Article  Google Scholar 

  • Clark TD, Farrell AP (2011) Effects of body mass on physiological and anatomical parameters of mature salmon: evidence against a universal heart rate scaling exponent. J Exp Biol 214:887–893

    Article  PubMed  CAS  Google Scholar 

  • Clarke A (2006) Temperature and the metabolic theory of ecology. Funct Ecol 20:405–412

    Article  Google Scholar 

  • Clarke A, Rothery P, Isaac NJB (2010) Scaling of basal metabolic rate with body mass and temperature in mammals. J Anim Ecol 79:610–619

    Article  PubMed  Google Scholar 

  • Clauset A, Erwin DH (2008) The evolution and distribution of species body size. Science 321:399–401

    Article  PubMed  CAS  Google Scholar 

  • Clauset A, Schwab DJ, Redner S (2009) How many species have mass M? Am Nat 173:256–263

    Article  PubMed  Google Scholar 

  • Cloutier M, Wellstead P (2010) The control systems structures of energy metabolism. J R Soc Interface 7:651–665

    Article  PubMed  CAS  Google Scholar 

  • Crile G, Quiring DP (1940) A record of the body weight and certain organ and gland weights of 3690 animals. Ohio J Sci XL:219–259

    Google Scholar 

  • Cruz-Neto AP, Garland T Jr, Abe AS (2001) Diet, phylogeny, and basal metabolic rate in phyllostomid bats. Zoology 104:49–58

    Article  PubMed  CAS  Google Scholar 

  • Csada RD, James PC, Espie RHM (1996) The “file drawer problem” of non-significant results: does it apply to biological research? Oikos 76:591–593

    Article  Google Scholar 

  • Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan J-F, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett 7:1121–1134

    Article  Google Scholar 

  • da Silva JKL, Garcia GJM, Barbosa LA (2006) Allometric scaling laws of metabolism. Phys Life Rev 3:229–261

    Article  Google Scholar 

  • Daan S, Masman D, Groenewold A (1990) Avian basal metabolic rates: their association with body composition and energy expenditure in nature. Am J Physiol 259:R333–R340

    PubMed  CAS  Google Scholar 

  • Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417:166–170

    Article  PubMed  CAS  Google Scholar 

  • Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2003) Reply to West et al. and Banavar et al. Nature 421:714

    Article  CAS  Google Scholar 

  • Davison J (1955) Body weight, cell surface and metabolic rate in anuran Amphibia. Biol Bull 109:407–419

    Article  Google Scholar 

  • Dehnel PA (1960) Effect of temperature and salinity on the oxygen consumption of two intertidal crabs. Biol Bull 118:215–249

    Article  CAS  Google Scholar 

  • Dehnel PA, Segal E (1956) Acclimation of oxygen consumption to temperature in the American cockroach (Periplaneta Americana). Biol Bull 111:53–61

    Article  Google Scholar 

  • Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature dependence of physiological and ecological traits. Proc Natl Acad Sci 108:10591–10596

    Article  PubMed  CAS  Google Scholar 

  • DeLong JP, Okie JG, Moses ME, Sibly RM, Brown JH (2010) Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc Natl Acad Sci USA 107:12941–12945

    Article  PubMed  CAS  Google Scholar 

  • Demetrius L (2003) Quantum statistics and allometric scaling of organisms. Phys A 322:477–490

    Article  CAS  Google Scholar 

  • Demetrius L (2006) The origin of allometric scaling laws in biology. J Theor Biol 243:455–467

    Article  PubMed  Google Scholar 

  • Demetrius L, Tuszynski JA (2010) Quantum metabolism explains the allometric scaling of metabolic rates. J R Soc Interface 7:507–514

    Article  PubMed  Google Scholar 

  • Dodds PS (2010) Optimal form of branching supply and collection networks. Phys Rev Lett 104:048702

    Article  PubMed  CAS  Google Scholar 

  • Dodds PS, Rothman DH, Weitz JS (2001) Re-examination of the ‘“3/4-law” of metabolism. J Theor Biol 209:9–27

    Article  PubMed  CAS  Google Scholar 

  • Dohm MR, Hayes JP, Garland T Jr (2001) The quantitative genetics of maximal and basal rates of oxygen consumption in mice. Genetics 159:267–277

    PubMed  CAS  Google Scholar 

  • Downs CJ, Hayes JP, Tracy CR (2008) Scaling metabolic rate with body mass and inverse body temperature: a test of the Arrhenius fractal supply model. Funct Ecol 22:239–244

    Article  Google Scholar 

  • Duncan RP, Forsythe DM, Hone J (2007) Testing the metabolic theory of ecology: allometric scaling exponents in mammals. Ecology 88:324–333

    Article  PubMed  Google Scholar 

  • Dutenhoffer MS, Swanson DL (1996) Relationship of basal to summit metabolic rate in passerine birds and the aerobic capacity model for the evolution of endothermy. Physiol Zool 69:1232–1254

    Google Scholar 

  • Ehnes RB, Rall BC, Brose U (2011) Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol Lett 14:993–1000

    Article  PubMed  Google Scholar 

  • Eisemann JH, Nienaber JA (1990) Tissue and whole-body oxygen uptake in fed and fasted steers. Br J Nutr 64:399–411

    Article  PubMed  CAS  Google Scholar 

  • Elia M (1992) Organ and tissue contributions to metabolic rate. In: Kinney JM, Tucker HN (eds) Energy metabolism: tissue determinants and cellular corollaries. Raven, New York

    Google Scholar 

  • Eliakim A, Barstow TJ, Brasel JA, Ajie H, Lee WNP, Renslo R, Berman N, Cooper DM (1996) Effect of exercise training on energy expenditure, muscle volume, and maximal oxygen uptake in female adolescents. J Pediatr 129:537–543

    Article  PubMed  CAS  Google Scholar 

  • Ellison CT, Burton RS (2006) Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus. Evolution 60:1382–1391

    PubMed  CAS  Google Scholar 

  • Farrell-Gray CC, Gotelli NJ (2005) Allometric exponents support a 3/4-power scaling law. Ecology 86:2083–2087

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Finn RN, Rønnestad I, van der Meeren T, Fyhn HJ (2002) Fuel and metabolic scaling during the early life stages of Atlantic cod Gadus morhua. Mar Ecol Prog Ser 243:217–234

    Article  Google Scholar 

  • Franz R, Hummel J, Kienzle E, Kölle P, Gunga H-C, Clauss M (2009) Allometry of visceral organs in living amniotes and its implications for sauropod dinosaurs. Proc R Soc B 276:1731–1736

    Article  PubMed  Google Scholar 

  • Frappell PB, Butler PJ (2004) Minimal metabolic rate, what it is, its usefulness, and its relationship to the evolution of endothermy: a brief synopsis. Physiol Biochem Zool 77:865–868

    Article  PubMed  CAS  Google Scholar 

  • Frappell PB, Hinds DS, Boggs DF (2001) Scaling of respiratory variables and the breathing pattern in birds: an allometric and phylogenetic approach. Physiol Biochem Zool 74:75–89

    Article  PubMed  CAS  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  PubMed  CAS  Google Scholar 

  • Froehle AW (2008) Climate variables as predictors of basal metabolic rate: new equations. Am J Hum Biol 20:510–529

    Article  PubMed  Google Scholar 

  • Garland T Jr (1983) The relation between maximal running speed and body mass in terrestrial mammals. J Zool 199:157–170

    Article  Google Scholar 

  • Garland T Jr, Bennett AF (1990) Quantitative genetics of maximal oxygen consumption in a garter snake. Am J Physiol Regul Integr Comp Physiol 259:R986–R992

    Google Scholar 

  • Garland T Jr, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–364

    Article  Google Scholar 

  • Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J Comp Physiol B 158:25–38

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  PubMed  CAS  Google Scholar 

  • Geluso K, Hayes JP (1999) Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiol Biochem Zool 72:189–197

    Article  PubMed  CAS  Google Scholar 

  • Gillooly JF, Allen AP (2007) Changes in body temperature influence the scaling of Vo2 max and aerobic scope in mammals. Biol Lett 3:99–102

    PubMed  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg L, Damuth J (2008) The space-lifetime hypothesis: viewing organisms in four dimensions, literally. Am Nat 171:125–131

    Article  PubMed  Google Scholar 

  • Glazier DS (1985) Relationship between metabolic rate and energy expenditure for lactation in Peromyscus. Comp Biochem Physiol A Comp Physiol 80:587–590

    Article  Google Scholar 

  • Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev 80:1–52

    Article  Google Scholar 

  • Glazier DS (2008) Effects of metabolic level on the body size scaling of metabolic rate in birds and mammals. Proc R Soc B 22:1405–1410

    Article  Google Scholar 

  • Glazier DS (2009a) Activity affects intraspecific body-size scaling of metabolic rate in ectothermic animals. J Comp Physiol B 179:821–828

    Article  PubMed  Google Scholar 

  • Glazier DS (2009b) Metabolic level and size scaling of rates of respiration and growth in unicellular organisms. Funct Ecol 23:963–968

    Article  Google Scholar 

  • Glazier DS (2009c) Ontogenetic body-mass scaling of resting metabolic rate covaries with species-specific metabolic level and body size in spiders and snakes. Comp Biochem Physiol A 153:403–407

    Article  CAS  Google Scholar 

  • Glazier DS (2010) A unifying explanation for diverse metabolic scaling in animals and plants. Biol Rev 85:111–138

    Article  PubMed  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philos Trans R Soc Lond B 326:119–157

    Article  CAS  Google Scholar 

  • Green JA, Halsey LG, Butler PJ, Holder RL (2007) Estimating the rate of oxygen consumption during submersion from the heart rate of diving animals. Am J Physiol Regul Integr Comp Physiol 292:R2028–R2038

    Article  PubMed  CAS  Google Scholar 

  • Green JA, Boyd IL, Woakes AJ, Warren NL, Butler PJ (2009) Evaluating the prudence of parents: daily energy expenditure throughout the annual cycle of a free-ranging bird. J Avian Biol 40:529–538

    Article  Google Scholar 

  • Guerino F, Huntington GB, Erdman RA (1991) The net portal and hepatic flux of metabolites and oxygen consumption in growing beef steers given postruminal casein. J Anim Sci 69:387–395

    PubMed  CAS  Google Scholar 

  • Guillemette CU, Fletcher QE, Boutin S, Hodges RM, McAdam AG, Humphries MM (2009) Lactating red squirrels experiencing high heat load occupy less insulated nests. Biol Lett 5:166–168

    Article  PubMed  Google Scholar 

  • Günther B, León de la Barra B (1966) A unified theory of biological similarities. J Theor Biol 13:48–59

    Article  Google Scholar 

  • Halsey LG, Butler PJ, Blackburn TM (2006) A phylogenetic analysis of the allometry of diving. Am Nat 167:276–287

    Article  PubMed  Google Scholar 

  • Halsey LG, Butler PJ, Fahlman A, Woakes A, Handrich Y (2008) Behavioral and physiological significance of minimum resting metabolic rate in king penguins. Physiol Biochem Zool 81:74–86

    Article  PubMed  CAS  Google Scholar 

  • Hammond K, Diamond J (1994) Limits to dietary nutrient intake and intestinal nutrient uptake in lactating mice. Physiol Zool 67:282–303

    Google Scholar 

  • Hammond KA, Chappell MA, Cardullo RA, Lin R-S, Johnsen TS (2000) The mechanistic basis of aerobic performance variation in red junglefowl. J Exp Biol 203:2053–2064

    PubMed  CAS  Google Scholar 

  • Harvey PH, Bennett PM (1983) Brain size, energetics, ecology and life history patterns. Nature 306:314–315

    Article  PubMed  CAS  Google Scholar 

  • Hawkins BA, Albuquerque FS, Araújo MB, Beck J, Bini LM, Cabrero-Sañudo FJ, Castro-Parga I, Diniz-Filho JAF, Ferrer-Castán D, Field R, Gómez JF, Hortal J, Kerr JT, Kitching IJ, León-Cortés JL, Lobo JM, Montoya D, Moreno JC, Ollalla-Tárraga MÁ, Pausas JG, Qian H, Rahbek C, Rodríguez MÁ, Sanders NJ, Williams P (2007a) A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. Ecology 88:1877–1888

    Article  PubMed  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF, Bini LM, Araújo MB, Field R, Hortal J, Kerr JT, Rahbek C, Rodríguez MÁ, Sanders NJ (2007b) Metabolic theory and diversity gradients: where do we go from here? Ecology 88:1898–1902

    Article  PubMed  Google Scholar 

  • Hayes JP (1989) Altitudinal and seasonal effects on aerobic metabolism of deer mice. J Comp Physiol B 159:453–459

    Article  PubMed  CAS  Google Scholar 

  • Hayes JP (2010) Metabolic rates, genetic constraints, and the evolution of endothermy. J Evol Biol 23:1868–1877

    Article  PubMed  CAS  Google Scholar 

  • Hayes JP, Garland T Jr (1995) The evolution of endothermy: testing the aerobic capacity model. Evolution 19:836–847

    Article  Google Scholar 

  • Hayes JP, O’Conner CS (1999) Natural selection on thermogenic capacity of high-altitude deer mice. Evolution 53:1280–1287

    Article  Google Scholar 

  • Hayes JP, Garland T Jr, Dohm MR (1992) Individual variation in metabolism and reproduction of Mus: are energetics and life history linked? Funct Ecol 6:5–14

    Article  Google Scholar 

  • Hayssen V, Lacy RC (1985) Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol A 81:741–754

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen AM (1960) Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep Steno Mem Hosp Nordisk Insulinlaboratorium 9:1–110

    Google Scholar 

  • Heusner AA (1982) Energy metabolism and body size: 1. Is the 0.75 mass exponent of Kleibers equation a statistical artifact? Respir Physiol 48:1–12

    Article  PubMed  CAS  Google Scholar 

  • Heusner AA (1991) Size and power in mammals. J Exp Biol 160:25–54

    PubMed  CAS  Google Scholar 

  • Hobbs NT, Hilborn R (2006) Alternatives to statistical hypothesis testing in ecology: a guide to self teaching. Ecol Appl 16:5–19

    Article  PubMed  Google Scholar 

  • Hochachka PW, Darveau CA, Andrews RD, Suarez RK (2003) Allometric cascade: a model for resolving body mass effects on metabolism. Comp Biochem Physiol A 134:675–691

    Article  CAS  Google Scholar 

  • Hogstad O (1987) It is expensive to be dominant. Auk 104:333–336

    Google Scholar 

  • Hulbert AJ, Else PL (1981) Comparison of the “mammal machine” and the “reptile machine”: energy use and thyroid activity. Am J Physiol Regul Integr Comp Physiol 241:R350–R356

    CAS  Google Scholar 

  • Hulbert AJ, Else PL, Manolis SC, Brand MD (2002) Proton leak in hepatocytes and liver mitochondria from archosaurs (crocodiles) and allometric relationships for ectotherms. J Comp Physiol B 172:387–397

    Article  PubMed  CAS  Google Scholar 

  • Huntington GB, Eisenmann JH, Whitt JM (1990) Portal blood flow in beef steers: comparison of techniques and relation to hepatic blood flow, cardiac output and oxygen uptake. J Anim Sci 68:1666–1673

    PubMed  CAS  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  • Irlich UM, Terblanche JS, Blackburn TM, Chown SL (2009) Insect rate-temperature relationships: environmental variation and the metabolic theory of ecology. Am Nat 174:819–835

    Article  PubMed  Google Scholar 

  • Isaac NJB, Carbone C (2010) Why are metabolic scaling exponents so controversial? Quantifying variance and testing hypotheses. Ecol Lett. doi:10.1111/j.1461-0248.2010.01461.x

  • Isler K, van Schaik CP (2006) Metabolic costs of brain size evolution. Biol Lett 2:557–560

    Article  PubMed  Google Scholar 

  • Jackson DM, Trayhurn P, Speakman JR (2001) Associations between energetics and over-winter survival in the short-tailed field vole Microtus agrestis. J Anim Ecol 70:633–640

    Article  Google Scholar 

  • Javed F, He Q, Davidson LE, Thornton JC, Albu J, Boxt L, Krasnow N, Elia M, Kang P, Heshka S, Gallagher D (2010) Brain and high metabolic rate organ mass: contributions to resting energy expenditure beyond fat-free mass. Am J Clin Nutr 91:907–912

    Article  PubMed  CAS  Google Scholar 

  • Jeneson JAL, Westerhoff HV, Kushmerick MJ (2000) A metabolic control analysis of kinetic controls in ATP free energy metabolism in contracting skeletal muscle. Am J Physiol 279:C813–C832

    CAS  Google Scholar 

  • Jetz W, Freckleton RP, McKechnie AE (2007) Environment, migratory tendency, phylogeny and basal metabolic rate in birds. PLoS ONE 3:e3261

    Article  CAS  Google Scholar 

  • Jeyasingh PD (2007) Plasticity in metabolic allometry: the role of dietary stoichiometry. Ecol Lett 10:282–289

    Article  PubMed  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Johnson MS, Speakman JR (2001) Limits to sustained energy intake: V. Effect of cold-exposure during lactation in Mus musculus. J Exp Biol 204:1967–1977

    PubMed  CAS  Google Scholar 

  • Johnson MS, Thomson SC, Speakman JR (2001a) Limits to sustained energy intake II. Inter-relationships between resting metabolic rate, life-history traits and morphology in Mus musculus. J Exp Biol 204:1446–1937

    Google Scholar 

  • Johnson MS, Thomson SC, Speakman JR (2001b) Limits to sustained energy intake: I. Lactation in the laboratory mouse Mus musculus. J Exp Biol 204:1925–1935

    PubMed  CAS  Google Scholar 

  • Johnston SL, Souter DM, Erwin SS, Tolkamp BJ, Yearsley JM, Gordon IJ, Illius AW, Kyriazakis I, Speakman JR (2007) Associations between basal metabolic rate and reproductive performance in C57BL/6J mice. J Exp Biol 210:65–74

    Article  PubMed  Google Scholar 

  • Jones JH (1998) Optimization of the mammalian respiratory system: symmorphosis versus single species adaptation. Comp Biochem Physiol B 120:125–138

    Article  PubMed  CAS  Google Scholar 

  • Jones JH, Taylor CR, Lindholm A, Straub R, Longworth KE, Karas RH (1989) Blood gas measurements during exercise: errors due to temperature correction. J Appl Physiol 67:879–884

    PubMed  CAS  Google Scholar 

  • Jones LD, Nielsen MK, Britton RA (1992) Genetic variation in liver mass, body mass, and liver:body mass in mice. J Anim Sci 70:2999–3006

    PubMed  CAS  Google Scholar 

  • Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C, Connolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster CA, Price SA, Rigby EA, Rist J, Teacher A, Bininda-Emonds ORP, Gittleman JL, Mace GM, Purvis A (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648

    Article  Google Scholar 

  • Kabat AP, Blackburn TM, McKechnie AE, Butler PJ (2008) Phylogenetic analysis of the allometric scaling of therapeutic regimes for birds. J Zool 275:359–367

    Article  Google Scholar 

  • Karasov WH (1987) Nutrient requirements and the design and function of guts in fish, reptiles, and mammals. In: Dejours P, Bolis L, Taylor CR, Weibel ER (eds) Comparative physiology: life in water and on land. Liviana Press, Padova

    Google Scholar 

  • Kearney MR, White CR (2012) Testing metabolic theories. Am Nat (in press)

  • Ketola T, Kotiaho JS (2009) Inbreeding, energy use and condition. J Evol Biol 22:770–781

    Article  PubMed  CAS  Google Scholar 

  • Ketola T, Kotiaho JS (2012) Inbreeding depression in the effects of body mass on energy use. Biol J Linn Soc 105:309–317

    Article  Google Scholar 

  • Khazaeli AA, Van Voorhies W, Curtsinger JW (2005) Longevity and metabolism in Drosophila melanogaster: genetic correlations between life span and age-specific metabolic rate in populations artificially selected for long life. Genetics 169:231–242

    Article  PubMed  CAS  Google Scholar 

  • Killen SS, Costa I, Brown JA, Gamperl AK (2007) Little left in the tank: metabolic scaling in marine teleosts and its implications for aerobic scope. Proc R Soc B 274:431–438

    Article  PubMed  Google Scholar 

  • Killen SS, Atkinson D, Glazier DS (2010) The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol Lett 13:184–193

    Article  PubMed  Google Scholar 

  • Kingsolver JG, Pfennig DW (2004) Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution 58:1608–1612

    PubMed  Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    CAS  Google Scholar 

  • Kleiber M (1961) The fire of life. Wiley, New York

    Google Scholar 

  • Kolokotrones T, Savage VM, Deeds EJ, Fontana W (2010) Curvature in metabolic scaling. Nature 464:753–756

    Article  PubMed  CAS  Google Scholar 

  • Konarzewski M, Diamond J (1995) Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution 49:1239–1248

    Article  Google Scholar 

  • Konarzewski M, Książek A (2012) Sources of intraspecific variation in the mass-specific basal metabolic rate: a review. doi:10.1007/s00360-012-0698-z

  • Konarzewski M, Książek A, Łapo I (2005) Artificial selection in metabolic rates and related traits in rodents. Integr Comp Biol 45:416–425

    Article  PubMed  Google Scholar 

  • Kooijman SALM (1986) Energy budgets can explain body size relations. J Theor Biol 121:269–282

    Article  Google Scholar 

  • Kooijman SALM (2010) Dynamic energy budget theory for metabolic organisation. Cambridge University Press, Cambridge

    Google Scholar 

  • Kooijman SALM, Baas J, Bontje D, Broerse M, Jager T, Van Gestel CAM, Van Hattum B (2007) Scaling relationships based on partition coefficients and body sizes have similarities and interactions. SAR QSAR Environ Res 18:315–330

    Article  PubMed  CAS  Google Scholar 

  • Koteja P (1996) Limits to the energy budget in a rodent, Peromyscus maniculatus: does gut capacity set the limit? Physiol Zool 69:994–1020

    Google Scholar 

  • Kozłowski J, Konarzewski M (2004) Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct Ecol 18:283–289

    Article  Google Scholar 

  • Kozłowski J, Konarzewski M (2005) West, Brown and Enquist’s model of allometric scaling again: the same questions remain. Funct Ecol 19:739–743

    Article  Google Scholar 

  • Kozłowski J, Weiner J (1997) Interspecific allometries are by-products of body size optimization. Am Nat 149:352–380

    Article  Google Scholar 

  • Kozłowski J, Konarzewski M, Gawelczyk AT (2003a) Cell size as a link between noncoding DNA and metabolic rate scaling. Proc Natl Acad Sci USA 100:14080–14085

    Article  PubMed  CAS  Google Scholar 

  • Kozłowski J, Konarzewski M, Gawelczyk AT (2003b) Intraspecific body size optimization produces intraspecific allometries. In: Blackburn TM, Gaston KJ (eds) Macroecology: concepts and consequences. Blackwell Science Ltd, Malden, pp 299–320

    Google Scholar 

  • Kozłowski J, Czarnołęski M, François-Krassowska A, Maciak S, Pis T (2010) Cell size is positively correlated between different tissues in passerine birds and amphibians, but not necessarily in mammals. Biol Lett. doi:10.1098/rsbl.2010.0288

  • Krebs HA (1950) Body size and tissue respiration. Biochim Biophys Acta 4:249–269

    Article  PubMed  CAS  Google Scholar 

  • Krogh A (1916) Respiratory exchange of animals and man. Longmans, Green and Co, London

    Google Scholar 

  • Król E, Speakman JR (2003) Limits to sustained energy intake VI. Energetics of lactation in laboratory mice at thermoneutrality. J Exp Biol 206:4255–4266

    Article  PubMed  Google Scholar 

  • Król E, Murphy RW, Speakman JR (2007) Limits to sustained energy intake. X. Effects of fur removal on reproductive performance in laboratory mice. J Exp Biol 240:4233–4243

    Article  Google Scholar 

  • Książek A, Konarzewski M, Łapo I (2004) Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice. Physiol Biochem Zool 77:890–899

    Article  PubMed  Google Scholar 

  • Lacy RC, Lynch CB (1979) Quantitative genetic analysis of temperature regulation in Mus musculus. I. Partitioning of variance. Genetics 91:743–753

    PubMed  CAS  Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33:402–416

    Article  Google Scholar 

  • Lane JM, Lawrence JM (1979) The effect of size, temperature, oxygen level and nutritional condition on oxygen uptake in the sand dollar, Mellita quinquiesperforata (Leske). Biol Bull 157:275–287

    Article  Google Scholar 

  • Lantová P, Zub K, Koskela E, Síchová K, Borowski Z (2011) Is there a linkage between metabolism and personality in small mammals? The root vole (Microtus oeconomus) example. Physiol Behav 104:378–383

    Article  PubMed  CAS  Google Scholar 

  • Lardies MA, Catalán TP, Bozinovic F (2004) Metabolism and life-history correlates in a lowland and highland population of a terrestrial isopod. Can J Zool 82:677–687

    Article  Google Scholar 

  • Larivée ML, Boutin S, Speakman JR, McAdam AG, Humphries MM (2010) Associations between over-winter survival and resting metabolic rate in juvenile North American red squirrels. Funct Ecol 24:597–607

    Article  Google Scholar 

  • Larsen FJ, Schiffer TA, Sahlin K, Ekblom B, Weitzberg E, Lundberg JO (2011) Mitochondrial oxygen affinity predicts basal metabolic rate in humans. FASEB J doi:10.1096/fj.1011-182139

  • Laurien-Kehnen C, Trillmich F (2003) Lactation performance of guinea pigs (Cavia porcellus) does not respond to experimental manipulation of pup demands. Behav Ecol Sociobiol 53:145–152

    Google Scholar 

  • Levins R (1966) The strategy of model building in population biology. Am Sci 54:421–431

    Google Scholar 

  • Lighton JRB (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, Oxford

    Book  Google Scholar 

  • Loiselle DS, Gibbs CL (1979) Species differences in cardiac energetics. Am J Physiol 237:H90–H98

    PubMed  CAS  Google Scholar 

  • Lovegrove BG (2003) The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J Comp Physiol B 173:87–112

    PubMed  CAS  Google Scholar 

  • Lovegrove BG (2004) Locomotor mode, maximum running speed, and basal metabolic rate in placental mammals. Physiol Biochem Zool 77:916–928

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2005) Seasonal thermoregulation power in mammals. J Comp Physiol B 175:234–247

    Article  Google Scholar 

  • Lovegrove BG (2009) Age at first reproduction and growth rate are independent of basal metabolic rate in mammals. J Comp Physiol B 179:391–401

    Article  PubMed  Google Scholar 

  • Lynch CB, Sulzbach DS (1984) Quantitative genetic analysis of temperature regulation in Mus musculus. II. Diallel analysis of individual traits. Evolution 38:527–540

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Maciak S, Konarzewski M, Kozłowski J, Janko K, Choleva L, Kotusz J, Boron A, Juchno D, Kujawa R (2011) Standard metabolic rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of Cobitis taenia hybrid complex. Funct Ecol 25:1072–1078

    Google Scholar 

  • Mahaney MC, Williams-Blangero S, Blangero J, Leland MM (1993) Quantitative genetics of relative organ weight variation in captive baboons. Hum Biol 65:991–1003

    PubMed  CAS  Google Scholar 

  • Makarieva AM, Gorshkov VD, Li B (2003) A note on metabolic rate dependence on body size in plants and animals. J Theor Biol 221:301–307

    Article  PubMed  Google Scholar 

  • Makarieva AM, Gorshkov VD, Li B-L, Chown SL, Reich PB, Gavrilov VM (2008) Mean mass-specific metabolic rates are strikingly similar across life’s major domains: evidence for life’s metabolic optimum. Proc Nat Acad Sci USA 105:16994–16999

    Article  PubMed  CAS  Google Scholar 

  • Marsden ID, Newell RC, Ahsanullah M (1973) The effect of starvation on the metabolism of the shore crab, Carcinus maenas. Comp Biochem Physiol A 45:195–213

    Article  CAS  Google Scholar 

  • Martin RD (1981) Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57–60

    Article  PubMed  CAS  Google Scholar 

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Article  Google Scholar 

  • Mattila TM, Bokma F (2008) Extant mammal body masses suggest punctuated equilibrium. Proc R Soc B 275:2195–2199

    Article  PubMed  Google Scholar 

  • Maurer BA, Brown JH, Rusler RD (1992) The micro and macro in body size evolution. Evolution 46:939–953

    Article  Google Scholar 

  • McKechnie AE (2008) Phenotypic flexibility in basal metabolic rate and the changing view of avian physiological diversity: a review. J Comp Physiol B 178:235–247

    Article  PubMed  Google Scholar 

  • McKechnie AE, Wolf BO (2004) The allometry of avian basal metabolic rate: good predictions need good data. Physiol Biochem Zool 77:502–521

    Article  PubMed  Google Scholar 

  • McKechnie AE, Freckleton RP, Jetz W (2006) Phenotypic plasticity in the scaling of avian basal metabolic rate. Proc R Soc B 273:931–937

    Article  PubMed  Google Scholar 

  • McKechnie AE, Chetty K, Lovegrove BG (2007) Phenotypic flexibility in the basal metabolic rate of laughing doves: responses to short-term thermal acclimation. J Exp Biol 210:97–106

    Article  PubMed  Google Scholar 

  • McMahon T (1973) Size and shape in biology. Science 179:1201–1204

    Article  PubMed  CAS  Google Scholar 

  • McNab BK (1969) The economics of temperature regulation in neotropical bats. Comp Biochem Physiol 31:227–268

    Article  PubMed  CAS  Google Scholar 

  • McNab BK (1986) The influence of food habits on the energetics of eutherian mammals. Ecol Monogr 56:1–20

    Article  Google Scholar 

  • McNab BK (1989) Brain size and its relation to the rate of metabolism in mammals. Am Nat 133:157–167

    Article  Google Scholar 

  • McNab BK (1997) On the utility of uniformity in the definition of basal rate of metabolism. Physiol Zool 70:718–720

    PubMed  CAS  Google Scholar 

  • McNab BK (2003) Standard energetics of phyllostomid bats: the inadequacies of phylogenetic-contrast analyses. Comp Biochem Physiol A 135:357–368

    Article  CAS  Google Scholar 

  • McNab BK (2008) An analysis of the factors that influence the level and scaling of mammalian BMR. Comp Biochem Physiol A 151:5–28

    Article  CAS  Google Scholar 

  • McNab BK (2009) Ecological factors affect the level and scaling of avian BMR. Comp Biochem Physiol A 152:22–45

    Article  CAS  Google Scholar 

  • McNab BK, Morrison P (1963) Body temperature and metabolism in subspecies of Peromyscus from arid and mesic environments. Ecol Monogr 33:63–82

    Article  Google Scholar 

  • Meehan TD (2006) Energy use and animal abundance in litter and soil communities. Ecology 87:1650–1658

    Article  PubMed  Google Scholar 

  • Meehan TD, Jetz W, Brown JH (2004) Energetic determinants of abundance in winter landbird communities. Ecol Lett 7:532–537

    Article  Google Scholar 

  • Meerlo P, Bolle L, Visser GH, Masman D, Daan S (1997) Basal metabolic rate in relation to body composition and daily energy expenditure in the field vole, Microtus agrestis. Physiol Zool 70:362–369

    PubMed  CAS  Google Scholar 

  • Moran D, Wells RMG (2007) Ontogenetic scaling of fish metabolism in the mouse-to-elephant mass magnitude range. Comp Biochem Physiol A 148:611–620

    Article  CAS  Google Scholar 

  • Mortola JP, Limoges M-J (2006) Resting breathing frequency in aquatic mammals: a comparative analysis with terrestrial species. Respir Physiol Neurobiol 154:500–514

    Article  PubMed  Google Scholar 

  • Mortola JP, Seguin J (2009) Resting breathing frequency in aquatic birds: a comparative analysis with terrestrial species. J Zool 279:210–218

    Article  Google Scholar 

  • Moses ME, Hou C, Woodruff WH, West GB, Nekola JC, Zuo W, Brown JH (2008) Revisiting a model of ontogenetic growth: estimating model parameters from theory and data. Am Nat 171:632–645

    Article  PubMed  Google Scholar 

  • Mueller P, Diamond J (2001) Metabolic rate and environmental productivity: well-provisioned animals evolved to run and idle fast. Proc Nat Acad Sci USA 98:12551–12554

    Article  Google Scholar 

  • Müller MJ, Langemann D, Gehrke I, Later W, Heller M, Glüer CC, Heymsfield SB, Bosy-Westphal A (2011) Effect of constitution on mass of individual organs and their association with metabolic rate in humans—a detailed view on allometric scaling. PLoS ONE 6:e22732

    Article  PubMed  CAS  Google Scholar 

  • Müller DWH, Codron D, Werner J, Fritz J, Hummell J, Griebeler EM, Clauss M (2012) Dichotomy of eutherian reproduction and metabolism. Oikos 121:102–115

    Google Scholar 

  • Munch SB, Salinas S (2009) Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc Nat Acad Sci USA 106:13860–13864

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Garcia A, Williams JB (2005) Basal metabolic rate in carnivores is associated with diet after controlling for phylogeny. Physiol Biochem Zool 78:1039–1056

    Article  PubMed  Google Scholar 

  • Nagy KA (2005) Field metabolic rate and body size. J Exp Biol 208:1621–1625

    Article  PubMed  Google Scholar 

  • Nagy KA, Girard IA, Brown TK (1999) Energetics of free-ranging mammals, reptiles and birds. Annu Rev Nutr 19:247–277

    Article  PubMed  CAS  Google Scholar 

  • Nakaya F, Saito Y, Motokawa T (2005) Experimental allometry: effect of size manipulation on metabolic rate of colonial ascidians. Proc R Soc B 272:1963–1969

    Article  PubMed  Google Scholar 

  • Nespolo RF, Franco M (2007) Whole-animal metabolic rate is a repeatable trait: a meta-analysis. J Exp Biol 210:2000–2005

    Article  PubMed  Google Scholar 

  • Nespolo RF, Bacigalupe LD, Sabat P, Bozinovic F (2002) Interplay among energy metabolism, organ mass and digestive enzyme activity in the mouse-opossum Thylamys elegans: the role of thermal acclimation. J Exp Biol 205:2697–2703

    PubMed  Google Scholar 

  • Nespolo RF, Bacigalupe LD, Bozinovic F (2003) Heritability of energetics in a wild mammal, the leaf-eared mouse (Phyllotis darwini). Evolution 57:1679–1688

    PubMed  Google Scholar 

  • Nespolo RF, Bustamante DM, Bacigalupe LD, Bozinovic F (2005) Quantitative genetics of bioenergetics and growth-related traits in the wild mammal, Phyllotis darwini. Evolution 59:1829–1837

    PubMed  CAS  Google Scholar 

  • Nespolo RF, Castañeda LE, Roff DA (2007) Quantitative genetic variation of metabolism in the nymphs of the sand cricket, Gryllus firmus, inferred from an analysis of inbred-lines. Biol Res 40:5–12

    Article  PubMed  Google Scholar 

  • Nespolo RF, Bacigalupe LD, Figueroa CC, Koteja P, Opazo JC (2011) Using new tools to solve an old problem: the evolution of endothermy in vertebrates. Trends Ecol Evol 26:414–423

    Article  PubMed  Google Scholar 

  • Nevill AM, Bate S (2005) Allometric cascade model and metabolic rate. Respir Physiol Neurobiol 146:1–2

    Article  PubMed  Google Scholar 

  • Nevill AM, Markovic G, Vucetic V, Holder R (2004) Can greater muscularity in larger individuals resolve the 34 power-law controversy when modelling maximum oxygen uptake? Ann Hum Biol 31:436–445

    Article  PubMed  CAS  Google Scholar 

  • Nevill A, Holder R, Markovic G (2006) Scaling maximum oxygen uptake using lower leg muscle volume provides further insight into the pitfalls of whole body-mass power laws. J Appl Physiol 101:1006–1007

    Article  PubMed  Google Scholar 

  • Nilsson J-Å, Åkesson M, Nilsson JF (2009) Heritability of resting metabolic rate in a wild population of blue tits. J Evol Biol 22:1867–1874

    Article  PubMed  Google Scholar 

  • O’Connor MP, Kemp SJ, Agosta SJ, Hansen F, Sieg AE, Wallace BP, McNair JN, Dunham AE (2007) Reconsidering the mechanistic basis of the metabolic theory of ecology. Oikos 116:1058–1072

    Article  Google Scholar 

  • Ohlberger J, Staaks G, Hölker F (2007) Effects of temperature, swimming speed and body mass on standard and active metabolic rate in vendance (Coregonus albula). J Comp Physiol B 177:905–916

    Article  PubMed  Google Scholar 

  • Opazo JC, Soto-Gamboa M, Fernández MJ (2005) Cell size and basal metabolic rate in hummingbirds. Rev Chil Hist Nat 78:261–265

    Article  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  PubMed  CAS  Google Scholar 

  • Painter P (2005a) Supply-demand balance in outward-directed networks and Kleiber’s law. Theor Biol Med Model 2:45

    Article  PubMed  Google Scholar 

  • Painter PR (2005b) Data from necropsy studies and in vitro tissue studies lead to a model for allometric scaling of basal metabolic rate. Theor Biol Med Model 2:39

    Article  PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  PubMed  CAS  Google Scholar 

  • Pastor CM (2000) Hepatic and splanchnic oxygen consumption during acute hypoxemic hypoxia in anesthetized pigs. Crit Care Med 28:765–773

    Article  PubMed  CAS  Google Scholar 

  • Patterson MR (1992) A mass transfer explanation of metabolic scaling relations in some aquatic invertebrates and algae. Science 255:1421–1423

    Article  PubMed  CAS  Google Scholar 

  • Perissinotti PP, Antenucci CD, Zenuto R, Luna F (2009) Effect of diet quality and soil hardness on metabolic rate in the subterranean rodent Ctenomys talarum. Comp Biochem Physiol A 154:298–307

    Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University press, Cambridge

    Book  Google Scholar 

  • Phillipson J (1981) Bioenergetic options and phylogeny. In: Townsend CR, Calow P (eds) Physiological ecology: an evolutionary approach to resource use. Sinauer Associates, Sunderland

    Google Scholar 

  • Pitts GC, Bullard TR (1968) Some interspecific aspects of body composition in mammals. In: Reid JT, Bensadoun A, Bull LS (eds) Body composition in animals and man. National Academy of Science, Washington, DC

    Google Scholar 

  • Polymeropoulos ET, Heldmaier G, Frappell PB, McAllan BM, Withers KW, Klingenspor M, White CR, Jastroch M (2011) Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak. Proc R Soc B. doi:10.1098/rspb.2011.0881

  • Porter RK (2001) Allometry of mammalian cellular oxygen consumption. CMLS Cell Mol Life Sci 58:815–822

    Article  CAS  Google Scholar 

  • Porter RK, Brand MD (1995) Causes of differences in respiration rate of hepatocytes from mammals of different body mass. Am J Physiol Regul Integr Comp Physiol 269:R1213–R1224

    CAS  Google Scholar 

  • Porter WP, Kearney M (2009) Size, shape, and the thermal niche of endotherms. Proc Nat Acad Sci USA 106:19666–19672

    Article  PubMed  CAS  Google Scholar 

  • Porter RK, Hulbert AJ, Brand MD (1996) Allometry of mitochondrial proton leak: influence of membrane surface area and fatty acid composition. Am J Physiol Regul Integr Comp Physiol 271:R1550–R1560

    CAS  Google Scholar 

  • Price CA, Enquist BJ, Savage VM (2007) A general model for allometric covariation in botanical form and function. Proc Natl Acad Sci USA 104:13204–13209

    Article  PubMed  CAS  Google Scholar 

  • Raichlen DA, Gordon AD, Muchlinski MN, Snodgrass JJ (2010) Causes and significance of variation in mammalian basal metabolism. J Comp Physiol B 180:301–311

    Google Scholar 

  • Rao GMM (1971) Influence of activity and salinity on the weight-dependent oxygen consumption of the rainbow trout Salmo gairdneri. Mar Biol 8:205–212

    Article  CAS  Google Scholar 

  • Reid D, Armstrong JD, Metcalfe NB (2011) Estimated standard metabolic rate interacts with territory quality and density to determine the growth rates of juvenile Atlantic salmon. Funct Ecol 25:1360–1367

    Google Scholar 

  • Reynolds PS (1997) Phylogenetic analysis of surface areas of mammals. J Mammal 78:859–868

    Article  Google Scholar 

  • Rezende EL, Diniz-Filho JAF (2012) Phylogenetic analyses: comparing species to infer adaptations and physiological mechanisms. Compr Physiol 2:639–674

    Google Scholar 

  • Rezende EL, Swanson DL, Novoa FF, Bozinovic F (2002) Passerines versus nonpasserines: so far, no statistical differences in the scaling of avian energetics. J Exp Biol 205:101–107

    PubMed  Google Scholar 

  • Rezende EL, Bozinovic F, Garland T Jr (2004) Climatic adaptation and the evolution of basal and maximum rates of metabolism in rodents. Evolution 58:1361–1374

    PubMed  Google Scholar 

  • Ricklefs RE, Konarzewski M, Daan S (1996) The relationship between basal metabolic rate and daily energy expenditure in birds and mammals. Am Nat 147:1047–1071

    Article  Google Scholar 

  • Riska B, Atchley WR (1985) Genetics of growth predict patterns of brain-size evolution. Science 229:668–671

    Article  PubMed  CAS  Google Scholar 

  • Riveros AJ, Enquist BJ (2011) Metabolic scaling in insects supports the predictions of the WBE model. J Insect Physiol. doi:10.1016/j.jinsphys.2011.1001.1011

  • Rixon RH, Stevenson JAF (1957) Factors influencing survival of rats in fasting. Metabolic rate and body weight loss. Am J Physiol 188:332–336

    PubMed  CAS  Google Scholar 

  • Roberts MF, Lightfoot EN, Porter WP (2010) A new model for the body size–metabolism relationship. Physiol Biochem Zool 83:395–405

    Article  PubMed  Google Scholar 

  • Roberts MF, Lightfoot EN, Porter WP (2011) Basal metabolic rate of endotherms can be modeled using heat-transfer principles and physiological concepts: reply to “Can the basal metabolic rate of endotherms be explained by biophysical modeling?”. Physiol Biochem Zool 84:111–114

    Article  PubMed  Google Scholar 

  • Roderick TH, Wimer RE, Wimer CC (1976) Genetic manipulation of neuroanatomical traits. In: McGaugh JL, Petrinovich LF, Krech D (eds) Knowing, thinking, and believing. Plenum Press, New York

    Google Scholar 

  • Rolfe DFS, Brand MD (1997) The physiological significance of mitochondrial proton leak in animal cells and tissues. Biosci Rep 17:9–16

    Article  PubMed  CAS  Google Scholar 

  • Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758

    PubMed  CAS  Google Scholar 

  • Rønning B, Jensen H, Moe B, Bech C (2007) Basal metabolic rate: heritability and genetic correlations with morphological traits in the zebra finch. J Evol Biol 20:1815–1822

    Article  PubMed  CAS  Google Scholar 

  • Røskaft E, Järvi T, Bakken M, Bech C, Reinertsen RE (1986) The relationship between social status and resting metabolic rate in great tits (Parus major) and pied flycatchers (Ficedula hypoleuca). Anim Behav 34:838–842

    Article  Google Scholar 

  • Rubner M (1883) Über den Einfluss der Körpergrösse auf Stoff- und Kraftwechsel. Zeischrift für Biologie 19:536–562

    Google Scholar 

  • Savage VM, Gillooly JF, Woodruff WH, West GB, Allen AP, Enquist BJ, Brown JH (2004) The predominance of quarter-power scaling in biology. Funct Ecol 18:257–282

    Article  Google Scholar 

  • Sadowska ET, Labocha MK, Baliga K, Stanisz A, Wróblewska AK, Jagusiak W, Koteja P (2005) Genetic correlations between basal and maximum metabolic rates in a wild rodent: consequences for evolution of endothermy. Evolution 59:672–681

    PubMed  Google Scholar 

  • Sadowska ET, Baliga-Klimczyk K, Chrząścik KM, Koteja P (2008) Laboratory model of adaptive radiation: a selection experiment in the bank vole. Physiol Biochem Zool 81:627–640

    Article  PubMed  Google Scholar 

  • Sadowska ET, Baliga-Klimczyk K, Labocha MK, Koteja P (2009) Genetic correlations in a wild rodent: grass-eaters and fast-growers evolve high basal metabolic rates. Evolution 63:1530–1539

    Article  PubMed  Google Scholar 

  • Savage VM, Enquist BJ, West GB (2007) Comment on ‘A critical understanding of the fractal model of metabolic scaling’. J Exp Biol 210:3873–3874

    Article  PubMed  Google Scholar 

  • Savage VM, Deeds EJ, Fontana W (2008) Sizing up allometric scaling theory. PLoS Comput Biol 4:e1000171

    Article  PubMed  CAS  Google Scholar 

  • Schimpf NG, Matthews PGD, White CR (2012) Cockroaches that exchange respiratory gases discontinuously survive food and water restriction. Evolution 66:597–604

    Article  PubMed  Google Scholar 

  • Schleucher E, Withers PC (2001) Re-evaluation of the allometry of wet thermal conductance for birds. Comp Biochem Physiol A 129:821–827

    CAS  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important?. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Seebacher F, Wilson RS (2006) Fighting fit: thermal plasticity of metabolic function and fighting success in the crayfish Cherax destructor. Funct Ecol 20:1045–1053

    Article  Google Scholar 

  • Seymour RS, Blaylock AJ (2000) The principle of Laplace and scaling of ventricular wall stress and blood pressure in mammals and birds. Physiol Biochem Zool 73:389–405

    Article  PubMed  CAS  Google Scholar 

  • Seymour RS, White CR (2011) Can the basal metabolic rate of endotherms be explained by biophysical modeling? Response to “A new model for the body size–metabolism relationship”. Physiol Biochem Zool 84:107–110

    Article  PubMed  Google Scholar 

  • Shipley B (2000) Cause and correlation in biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sieg AE, O’Conner MP, McNair JN, Grant BW, Agosta SJ, Dunham AE (2009) Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? Am Nat 174:720–733

    Article  PubMed  Google Scholar 

  • Simons MJP, Reimert I, van der Vinne V, Hambly C, Vaanholt LM, Speakman JR, Gerkema MP (2011) Ambient temperature shapes reproductive output during pregnancy and lactation in the common vole (Microtus arvalis): a test of the heat dissipation limit theory. J Exp Biol 214:38–49

    Article  PubMed  Google Scholar 

  • Smil V (2000) Laying down the law. Nature 403:597

    Article  PubMed  CAS  Google Scholar 

  • Smit B, McKechnie AE (2010) Avian seasonal metabolic variation in a subtropical desert: basal metabolic rates are lower in winter than in summer. Funct Ecol 24:330–339

    Article  Google Scholar 

  • Sol D, Timmermans S, Lefebvre L (2002) Behavioural flexibility and invasion success in birds. Anim Behav 63:495–502

    Article  Google Scholar 

  • Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L (2005) Big brains, enhanced cognition, and response of birds to novel environments. Proc Natl Acad Sci USA 102:5460–5465

    Article  PubMed  CAS  Google Scholar 

  • Song Z-G, Wang D-H (2006) Basal metabolic rate and organ size in Brandt’s voles (Lasiopodomys brandtii): Effects of photoperiod, temperature and diet quality. Physiol Behav 89:704–710

    Article  PubMed  CAS  Google Scholar 

  • Speakman JR, Król E (2010) Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J Anim Ecol 79:726–746

    PubMed  Google Scholar 

  • Speakman JR, Król E (2011) Limits to sustained energy intake. XIII. Recent progress and future perspectives. J Exp Biol 214:230–241

    Article  PubMed  Google Scholar 

  • Speakman JR, Ergon T, Cavanagh R, Reid K, Scantlebury DM, Lambin X (2003) Resting and daily energy expenditures of free-living field voles are positively correlated but reflect extrinsic rather than intrinsic factors. Proc Natl Acad Sci USA 100:14057–14062

    Article  PubMed  CAS  Google Scholar 

  • Speakman JR, Talbot DA, Selman C, Snart S, McLaren JS, Redman P, Krol E, Jackson DM, Johnson MS, Brand MD (2004) Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 3:87–95

    Article  PubMed  CAS  Google Scholar 

  • Stahl WR (1967) Scaling of respiratory variables in mammals. J Appl Physiol 22:453–460

    PubMed  CAS  Google Scholar 

  • Stanley SM (1973) An explanation for Cope’s rule. Evolution 27:1–26

    Article  Google Scholar 

  • Starostová Z, Kubička L, Konarzewski M, Kozłowski J, Kratochvíl L (2009) Cell size but not genome size affects scaling of metabolic rate in eyelid geckos. Am Nat 147:E100–E105

    Article  Google Scholar 

  • Suarez RK, Darveau CA (2005) Multi-level regulation and metabolic scaling. J Exp Biol 208:1627–1634

    Article  PubMed  Google Scholar 

  • Suarez RK, Darveau C-A, Childress JJ (2004) Metabolic scaling: a many-splendoured thing. Comp Biochem Physiol A 139:531–541

    Article  CAS  Google Scholar 

  • Swallow JG, Hayes JP, Koteja P, Garland T Jr (2009) Selection experiments and experimental evolution of performance and physiology. In: Garland T Jr, Rose MR (eds) Experimental evolution: concepts, methods, and applications of selection experiments. University of California Press, Berkeley, pp 301–351

    Google Scholar 

  • Swanson DL, Olmstead KL (1999) Evidence for a proximate influence of winter temperature on metabolism in passerine birds. Physiol Biochem Zool 72:566–575

    Article  PubMed  CAS  Google Scholar 

  • Terblanche JS, White CR, Blackburn TM, Marais E, Chown SL (2008) Scaling of gas exchange cycle frequency in insects. Biol Lett 4:127–129

    Article  PubMed  Google Scholar 

  • Thomas S, Fell DA (1998) A control analysis exploration of the role of ATP utilisation in glycolytic-flux control and glycolytic-metabolite-concentration regulation. Eur J Biochem 258:956–967

    Article  PubMed  CAS  Google Scholar 

  • Tieleman BI, Williams JB (2000) The adjustment of avian metabolic rates and water fluxes to desert environments. Physiol Biochem Zool 73:461–479

    Article  PubMed  CAS  Google Scholar 

  • Tieleman BI, Williams JB, Buschur ME, Brown CR (2003) Phenotypic variation of larks along an aridity gradient: are desert birds more flexible? Ecology 84:1800–1815

    Article  Google Scholar 

  • Tieleman BI, Versteegh MA, Fries A, Helm B, Dingemanse NJ, Gibbs HL, Williams JB (2009a) Genetic modulation of energy metabolism in birds through mitochondrial function. Proc R Soc B 276:1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Tieleman BI, Versteegh MA, Helm B, Dingemanse NJ (2009b) Quantitative genetics parameters show partial independent evolutionary potential for body mass and metabolism in stonechats from different populations. J Zool 278:129–136

    Article  Google Scholar 

  • Timonin ME, Carrière CJ, Dudych AD, Latimer JGW, Unruh ST, Willis CKR (2011) Individual differences in the behavioural responses of meadow voles to an unfamiliar environment are not correlated with variation in resting metabolic rate. J Zool 284:198–205

    Article  Google Scholar 

  • Tolfrey K, Barker A, Thom JM, Morse CI, Narici MV, Batterham AM (2006) Scaling of maximal oxygen uptake by lower leg muscle volume in boys and men. J Appl Physiol 100:1851–1856

    Article  PubMed  Google Scholar 

  • Vaca HF, White CR (2010) Environmental modulation of metabolic allometry in ornate rainbowfish Rhadinocentrus ornatus. Biol Lett 6:136–138

    Article  PubMed  Google Scholar 

  • Veloso C, Bozinovic F (1993) Dietary and digestive constraints on basal energy metabolism in a small herbivorous rodent. Ecology 74:2003–2010

    Article  Google Scholar 

  • Vézina F, Jalvingh KM, Dekinga A, Piersma T (2006) Acclimation to different thermal conditions in a northerly wintering shorebird is driven by body mass-related changes in organ size. J Exp Biol 209:3952

    Article  Google Scholar 

  • Vinogradov AE (1995) Nucleotypic effect in homeotherms: Body-mass-corrected basal metabolic rate of mammals is related to genome size. Evolution 49:1249–1259

    Article  Google Scholar 

  • Vinogradov AE, Anatskaya OV (2006) Genome size and metabolic intensity in tetrapods: a tale of two lines. Proc R Soc B Biol Sci 273:27–32

    Article  Google Scholar 

  • Wagner PD (1993) Algebraic analysis of the determinants of VO2max. Respir Physiol 93:221–237

    Article  PubMed  CAS  Google Scholar 

  • Walsh PJ, Somero GN (1981) Temperature adaptation in sea anemones: physiological and biochemical variability in geographically separate populations of Metridium senile. Mar Biol 62:25–34

    Article  CAS  Google Scholar 

  • Wang Z, O’Conner TP, Heshka S, Heymsfield SB (2001) The reconstruction of Kleiber’s law at the organ-tissue level. J Nutr 131:2967–2970

    PubMed  CAS  Google Scholar 

  • Wang Z, Brown JH, Tang Z, Fang J (2009) Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proc Nat Acad Sci USA 106:13388–13392

    Article  PubMed  CAS  Google Scholar 

  • Weibel ER, Hoppeler H (2005) Exercise-induced maximal metabolic rate scales with muscle aerobic capacity. J Exp Biol 208:1635–1644

    Article  PubMed  Google Scholar 

  • Weibel ER, Bacigalupe LD, Schmidt B, Hoppeler H (2004) Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as a determinant factor. Respir Physiol Neurobiol 140:115–132

    Article  PubMed  Google Scholar 

  • Weisbecker V, Goswami A (2010) Brain size, life history, and metabolism at the marsupial/placental dichotomy. Proc Nat Acad Sci USA 107:16216–16221

    Article  PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science 284:1677–1679

    Article  PubMed  CAS  Google Scholar 

  • West GB, Enquist BJ, Brown JH (2002a) Modelling universality and scaling—reply. Nature 420:626–627

    Article  CAS  Google Scholar 

  • West GB, Woodruff WH, Brown JH (2002b) Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc Nat Acad Sci USA 99:2473–2478

    Article  PubMed  Google Scholar 

  • West GB, Savage VM, Gillooly JF, Enquist BJ, Woodruff WH, Brown JH (2003) Why does metabolic rate scale with body size? Nature 421:713

    Article  PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (2004) Growth models based on first principles or phenomenology? Funct Ecol 18:188–196

    Article  Google Scholar 

  • Westerterp KR, Speakman JR (2008) Physical activity energy expenditure has not declined since the 1980 s and matches energy expenditures of wild mammals. Int J Obes 32:1256–1263

    Article  CAS  Google Scholar 

  • White CR (2011) Allometric estimation of metabolic rates in animals. Comp Biochem Physiol A 158:346–357

    Article  CAS  Google Scholar 

  • White CR, Kearney MR (2012) Allometry. Compr Physiol (in review)

  • White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci USA 100:4046–4049

    Article  PubMed  CAS  Google Scholar 

  • White CR, Seymour RS (2004) Does BMR contain a useful signal? Mammalian BMR allometry and correlations with a selection of physiological, ecological and life-history variables. Physiol Biochem Zool 77:929–941

    Article  PubMed  Google Scholar 

  • White CR, Seymour RS (2005a) Allometric scaling of mammalian metabolism. J Exp Biol 208:1611–1619

    Article  PubMed  CAS  Google Scholar 

  • White CR, Seymour RS (2005b) Sample size and mass range effects on the allometric exponent of basal metabolic rate. Comp Biochem Physiol A 142:74–78

    Article  CAS  Google Scholar 

  • White CR, Seymour RS (2011) Physiological functions that scale to body mass in fish. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, San Diego, pp 1573–1582

    Chapter  Google Scholar 

  • White CR, Phillips NF, Seymour RS (2006) The scaling and temperature dependence of vertebrate metabolism. Biol Lett 2:125–127

    Article  PubMed  Google Scholar 

  • White CR, Blackburn TM, Martin GR, Butler PJ (2007a) Basal metabolic rate of birds is associated with habitat temperature and precipitation, not primary productivity. Proc R Soc B 274:287–293

    Article  PubMed  Google Scholar 

  • White CR, Cassey P, Blackburn TM (2007b) Allometric exponents do not support a universal metabolic allometry. Ecology 88:315–323

    Article  PubMed  Google Scholar 

  • White CR, Terblanche JS, Kabat AP, Blackburn TM, Chown SL, Butler PJ (2008) Allometric scaling of maximum metabolic rate: the influence of temperature. Funct Ecol 22:616–623

    Article  Google Scholar 

  • White CR, Blackburn TM, Seymour RS (2009) Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution 63:2658–2667

    Article  PubMed  Google Scholar 

  • White CR, Grémillet D, Green JA, Martin GR, Butler PJ (2011a) Metabolic rate throughout the annual cycle reveals the demands of an Arctic existence in Great Cormorants. Ecology 92:475–486

    Article  PubMed  Google Scholar 

  • White CR, Kearney MR, Matthews PGD, Kooijman SALM, Marshall DJ (2011b) A manipulative test of competing theories for metabolic scaling. Am Nat 178:746–754

    Article  PubMed  Google Scholar 

  • White CR, Alton LA, Frappell PB (2012) Metabolic cold adaptation in fish occurs at the level of whole animal, mitochondria, and enzyme. Proc R Soc Lond B Biol Sci 279:1740–1747

    Article  CAS  Google Scholar 

  • Wikelski M, Spinnery L, Schelsky W, Scheuerlein A, Gwinner E (2003) Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes. Proc R Soc B 270:2383–2388

    Article  PubMed  Google Scholar 

  • Williams JB, Tieleman BI (2000) Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. J Exp Biol 203:3153–3159

    PubMed  CAS  Google Scholar 

  • Williams JB, Miller RA, Harper JM, Wiersma P (2010) Functional linkages for the pace of life, life-history, and environment in birds. Integr Comp Biol 50:855–868

    Article  PubMed  Google Scholar 

  • Withers PC (2001) Design, calibration and calculation for flow-through respirometry systems. Aust J Zool 49:445–461

    Article  Google Scholar 

  • Withers PC, Cooper CE, Larcombe AN (2006) Environmental correlates of physiological variables in marsupials. Physiol Biochem Zool 79:437–453

    Article  PubMed  CAS  Google Scholar 

  • Witting L (1995) The body mass allometries as evolutionarily determined by the foraging of mobile organisms. J Theor Biol 177:129–137

    Article  Google Scholar 

  • Wone B, Sears MW, Labocha MK, Donovan ER, Hayes JP (2009) Genetic variances and covariances of aerobic metabolic rates in laboratory mice. Proc R Soc B 276:3695–3704

    Article  PubMed  Google Scholar 

  • Wone B, Donovan ER, Hayes JP (2011) Metabolomics of aerobic metabolism in mice selected for increased maximal metabolic rate. Comp Biochem Physiol D Genomics Proteomics 6:399–405

    Article  CAS  Google Scholar 

  • Wu S-H, Zhang L-N, Speakman JR, Wang D-H (2009) Limits to sustained energy intake. XI. A test of the heat dissipation limitation hypothesis in lactating Brandt’s voles (Lasiopodomys brandtii). J Exp Biol 212:3455–3465

    Article  PubMed  Google Scholar 

  • Yamamoto T, Ueda H, Higashi S (1998) Correlation among dominance status, metabolic rate and otolith size in masu salmon. J Fish Biol 52:281–290

    Article  Google Scholar 

  • Zhao Z-J (2011) Energy budget during lactation in striped hamsters at different ambient temperatures. J Exp Biol 214:988–995

    Article  PubMed  Google Scholar 

  • Zhao Z-J, Cao J (2009) Effect of fur removal on the thermal conductance and energy budget in lactating Swiss mice. J Exp Biol 212:2541–2549

    Article  PubMed  Google Scholar 

  • Zhao Z-J, Wang D-H (2009) Plasticity in the physiological energetics of Mongolian gerbils is associated with diet quality. Physiol Biochem Zool 82:504–515

    Google Scholar 

  • Zuo W, Moses ME, Hou C, Woodruff WH, West GB, Brown JH (2009) Response to comments on “Energy uptake and allocation during ontogeny”. Science 325:1206

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Lesley Alton, Doug Glazier, Phil Matthews and four anonymous reviewers provided detailed comments on an earlier version of the manuscript, and Jon Green, Lewis Halsey, Karyn Johnson, James Maino and Dustin Marshall provided helpful suggestions. Ian Hume showed exemplary patience in guiding the manuscript through several phases of development. Our research is funded by the Australian Research Council (Projects DP0987626, DP110101776, DP110102813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig R. White.

Additional information

Communicated by I.D. Hume.

Appendices

Appendix 1: Phylogenetic methods for the analysis of the effect of diet on avian basal metabolic rate

The relationship between log transformed basal metabolic rate (BMR), log transformed body mass (M) and dietary categories was analysed using phylogenetic generalised least squares (PGLS) (Grafen 1989; Martins and Hansen 1997; Garland and Ives 2000) in the analysis of phylogenetics and evolution (APE) package (Paradis et al. 2004) within R (Ihaka and Gentleman 1996) according to established procedures (Halsey et al. 2006; Duncan et al. 2007; White et al. 2009). Data for avian BMR matched to a phylogenetic hypothesis were obtained from a published analysis of the scaling of BMR (Kabat et al. 2008), and were matched to dietary categories provided by McNab (2009). Matched BMR and diet data were available for a total of 287 species. Since the true branch lengths in the phylogeny are unknown, two branch length assumptions were compared: all branches set equal to 1, and an alternative assumption that branch lengths were proportional in length to the number of taxa descended from the node to which the branch leads (Grafen 1989). A measure of phylogenetic correlation, λ (Pagel 1999; Freckleton et al. 2002), was estimated by fitting PGLS models with different values of λ and finding the value that maximises the log likelihood. The degree to which trait evolution deviates from Brownian motion (λ = 1) was accommodated by modifying the covariance matrix using the maximum likelihood value of λ, which is a multiplier of the off-diagonal elements of the covariance matrix (i.e., those quantifying the degree of relatedness between species). All models were compared on the basis of Akaike’s information criterion (AIC) as a measure of model fit (Burnham and Anderson 2001, 2002). The relative support of alternative models was compared on the basis of Δ i (=AIC − minimum AIC); models having Δ i  ≤ 2 have substantial support, those where 4 ≤ Δ i  ≤ 7 have considerably less support, while models having Δ i  > 10 have essentially no support (Burnham and Anderson 2001).

Appendix 2: Methods for the generation of an allometric association between metabolic rate and body mass

The model for allometric scaling is based on Monte Carlo simulations developed to understand the causes of the observed right-skewed lognormal distribution of mammalian body masses (Maurer et al. 1992; Blackburn and Gaston 1994, 1998, 1999). Initially, 400 ‘species’ with a mass (M) of 1 and a metabolic rate (MR) of 1 were generated. For each species, a random change in M was then generated by multiplying M by a normal deviate with a mean of 0 and standard deviation of 0.02 and then adding M. This was then repeated a total of 5,000 times for each ‘species’. Thus, for each of the 5,000 time steps, mass varied randomly with a standard deviation of 2 % of the value of M at the previous time step. Because the genetic correlation between MR and M is positive and often <1 (Table 7), factorial changes in MR at each time step were randomly smaller than the changes in MR (see e.g. Fig. 4). This procedure generates lognormal distributions of M and MR, consistent with the idea that body size evolves multiplicatively, and could be made more realistic by the introduction of size-biased selection and extinction, and anagenetic size change within species between speciation and extinction events (e.g. Stanley 1973; Maurer et al. 1992; Kingsolver and Pfennig 2004; Clauset and Erwin 2008; Mattila and Bokma 2008; Clauset et al. 2009). The consequences of variation in MR for allometric scaling could be examined by including selections against low (e.g. Jackson et al. 2001) or high (e.g. Artacho and Nespolo 2009) MR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, C.R., Kearney, M.R. Determinants of inter-specific variation in basal metabolic rate. J Comp Physiol B 183, 1–26 (2013). https://doi.org/10.1007/s00360-012-0676-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0676-5

Keywords

Navigation