Skip to main content
Log in

HIF-1α regulation in mammalian hibernators: role of non-coding RNA in HIF-1α control during torpor in ground squirrels and bats

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

A potential role for non-coding RNAs, miR-106b and antisense hypoxia inducible transcription factor-1 (HIF-1α), in HIF-1α regulation during mammalian hibernation was investigated in two species, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and the little brown bat (Myotis lucifugus). Both species showed differential regulation of HIF-1α during hibernation. HIF-1α protein levels increased significantly in skeletal muscle of both species when animals entered torpor, as well as in bat liver. HIF-1α mRNA levels correlated with the protein increase in bat skeletal muscle and liver but not in squirrel skeletal muscle. Antisense HIF-1α transcripts were identified in skeletal muscle of both hibernators. The expression of antisense HIF-1α was reduced in skeletal muscle of torpid bats compared with euthermic controls, suggesting that release of inhibition by the antisense RNA contributes to regulating HIF-1α translation in this tissue during torpor. The expression of miR-106b, a microRNA associated with HIF-1α regulation, also decreased during torpor in both skeletal muscle and liver of bats and in ground squirrel skeletal muscle. These data present the first evidence that non-coding RNA provides novel post-transcriptional mechanisms of HIF-1α regulation when hibernators descend into deep cold torpor, and also demonstrate that these mechanisms are conserved in two divergent mammalian orders (Rodentia and Chiroptera).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JM, Difazio LT, Rolandelli RH, Lujan JJ, Hasko GY, Csoka B, Selmeczy Z, Nemeth ZH (2009) HIF-1: a key mediator in hypoxia. Acta Physiol Hungarica 96:19–28

    Article  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  • Biggar KK, Storey KB (2011) The emerging roles of microRNAs in the molecular responses of metabolic rate depression. J Mol Cell Biol 3:167–175

    Article  PubMed  CAS  Google Scholar 

  • Biggar KK, Kornfeld SF, Storey KB (2011) Amplification and sequencing of mature microRNAs in uncharacterized animal models using stem-loop reverse transcription-polymerase chain reaction. Anal Biochem 416:231–233

    Article  PubMed  CAS  Google Scholar 

  • Bos R (2001) Levels of hypoxia-inducible factor-1α during breast carcinogenesis. J Natl Cancer Inst 93:309–314

    Article  PubMed  CAS  Google Scholar 

  • Buck CL, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol Regul Integr Comp Physiol 279:R255–R262

    PubMed  CAS  Google Scholar 

  • Buck MJ, Squire TL, Andrews MT (2002) Coordinate expression of the PDK4 gene: a means of regulating fuel selection in a hibernating mammal. Physiol Genomics 8:5–13

    PubMed  CAS  Google Scholar 

  • Chun YS, Kim MS, Park JW (2002) Oxygen-dependent and -independent regulation of HIF-1 alpha. J Korean Med Sci 17:581–588

    PubMed  CAS  Google Scholar 

  • Dalmay T, Edwards DR (2006) MicroRNAs and the hallmarks of cancer. Oncogene 25:6170–6175

    Article  PubMed  CAS  Google Scholar 

  • Dirnagl U, Becker K, Meisel A (2006) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8:398–412

    Article  Google Scholar 

  • Drew KL, Harris MB, LaManna JC, Smith MA, Zhu XW, Ma YL (2004) Hypoxia tolerance in mammalian heterotherms. J Exp Biol 207:3155–3162

    Article  PubMed  CAS  Google Scholar 

  • Eddy SF, Storey KB (2007) p38MAPK regulation of transcription factor targets in muscle and heart of hibernating bats, Myotis lucifugus. Cell Biochem Function 25:759–765

    Article  CAS  Google Scholar 

  • Faghihi MA, Wahlestedt CW (2009) Regulatory roles of natural antisense transcripts. Nature Rev Mol Cell Biol 10:637–644

    Article  CAS  Google Scholar 

  • Frerichs KU, Kennedy C, Sokoloff L, Hallenbeck JM (1994) Local cerebral blood flow during hibernation, a model of natural tolerance to “cerebral ischemia”. J Cereb Blood Flow Metab 14:193–205

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J Comp Physiol 158:25–37

    CAS  Google Scholar 

  • Good L (2003) Translation repression by antisense sequences. Cell Mol Life Sci 60:854–861

    PubMed  CAS  Google Scholar 

  • Ho EC, Donaldson ME, Saville BJ (2010) Detection of antisense RNA transcripts by strand-specific RT-PCR. Meth Mol Biol 630:125–138

    Article  CAS  Google Scholar 

  • Huang EL, Gu J, Schau M, Bunn RH (1998) Regulation of hypoxia-inducible factor 1a is mediated by an O2-dependent degradation domain via the ubiquitin proteasome pathway. Biochemistry 95:7987–7992

    CAS  Google Scholar 

  • Kapranov P, Willingham AT, Gingeras TR (2007) Genome-wide transcription and the implications for genomic organization. Nature Rev Genetics 8:413–423

    Article  CAS  Google Scholar 

  • Loor G, Schumacker PT (2008) Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ 15:686–690

    Article  PubMed  CAS  Google Scholar 

  • McMullen DC, Hallenbeck JM (2010) Regulation of Akt during torpor in the hibernating ground squirrel, Ictidomys tridecemlineatus. J Comp Physiol B 180(6):927–934

    Article  PubMed  CAS  Google Scholar 

  • Mercer TR, Marcel MD, Mattick JS (2009) Long non-coding RNAs: insight into functions. Nature Rev Genetics 10:155–159

    Article  CAS  Google Scholar 

  • Morin P, Storey KB (2005) Cloning and expression of hypoxia-inducible factor 1a from the hibernating ground squirrel, Spermophilus tridecemlineatus. Biochim Biophys Acta 1729:32–40

    Article  PubMed  CAS  Google Scholar 

  • Morin P, Dubuc A, Storey KB (2008) Differential expression of microRNA species in organs of hibernating ground squirrels: a role in translational suppression during torpor. Biochim Biophys Acta 1779:628–633

    Article  PubMed  CAS  Google Scholar 

  • Rossignol F, Vache C, Clottes E (2002) Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Intl J Genes Genom 299:135–140

    CAS  Google Scholar 

  • Rossignol F, de Laplanche E, Mounier R, Bonnefont J, Cayre A, Godinot C, Simonnet H, Clottes E (2004) Natural antisense transcripts of HIF-1alpha are conserved in rodents. Intl J Genes Genom 339:121–130

    CAS  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nature Rev 3:721–732

    CAS  Google Scholar 

  • Semenza GL (2007) Hypoxia-inducible factor-1 (HIF-1) pathway. Sci STKE 407:cm8

    Article  Google Scholar 

  • Singh J, Nagaraju J (2008) In silico prediction and characterization of microRNAs from red flour beetle (Tribolium castaneum). Insect Mol Biol 17:427–436

    Article  PubMed  CAS  Google Scholar 

  • Storey KB (2003) Mammalian hibernation: transcriptional and translational controls. Adv Exp Med Biol 543:21–38

    Article  PubMed  CAS  Google Scholar 

  • Storey KB, Storey JM (2004) Mammalian hibernation: biochemical adaptation and gene expression. In: Storey KB (ed) Functional metabolism: regulation and adaptation. Wiley-Liss, Hoboken, pp 443–471

    Chapter  Google Scholar 

  • Storey KB, Storey JM (2010) Metabolic rate depression: the biochemistry of mammalian hibernation. In: Makowski GS (ed) Advances in clinical chemistry. Elsevier Inc., Burlington, pp 77–108

    Google Scholar 

  • Thrash-Bingham CA, Tartof KD (1999) aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer Inst 91:143–151

    Article  PubMed  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  • Wang LCH (1989) Ecological, physiological and biochemical aspects of torpor in mammals and birds. In: Wang LCH (ed) Advances in comparative and environmental physiology, vol 4. Springer, Heidelberg, pp 361–401

    Google Scholar 

  • Watanabe Y, Yachie N, Numata K, Saito R, Kanai A, Tomita M (2006) Computational analysis of microRNA targets in Caenorhabditis elegans. Gene 365:2–10

    Article  PubMed  CAS  Google Scholar 

  • Wenger RH, Kvietikova I, Rolfs A, Gassmann M, Marti HH (1997) Hypoxia-inducible factor-1 alpha is regulated at the post-mRNA level. Kidney Intl 51:560–563

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks go to Dr. J.M. Hallenbeck (NINDS, NIH, Bethesda) and Dr. D. Thomas (Université′de Sherbrooke) for providing ground squirrel and bat tissues, respectively, and to J.M. Storey for editorial review of the manuscript. This work was supported by a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada. K.B. Storey holds the Canada Research Chair in Molecular Physiology, K.K. Biggar held an NSERC postgraduate fellowship, and Y. Maistrovski was supported by an NSERC undergraduate summer research award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Storey.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maistrovski, Y., Biggar, K.K. & Storey, K.B. HIF-1α regulation in mammalian hibernators: role of non-coding RNA in HIF-1α control during torpor in ground squirrels and bats. J Comp Physiol B 182, 849–859 (2012). https://doi.org/10.1007/s00360-012-0662-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0662-y

Keywords

Navigation