Skip to main content
Log in

Interpreting indices of physiological stress in free-living vertebrates

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

When vertebrate physiological ecologists use the terms ‘stress’ or ‘physiological stress’, they typically mean the level of hypothalamus–pituitary–adrenal (HPA-) axis activation. Measurements of stress hormone concentrations (e.g. glucocorticoids in blood, urine or faeces), leukocytes (e.g. the neutrophil–lymphocyte ratio or heterophil equivalent), immunofunction (e.g. innate, cell-mediated or humoral immunity measures) and regenerative anaemia (e.g. mean erythrocyte volume and red blood cell distribution width) have all been used to estimate HPA-axis activity in free-living vertebrates. Stress metrics have provided insights into aspects of autecology or population regulation that could not have been easily obtained using other indices of population wellbeing, such as body condition or relative abundance. However, short- and long-term stress (often problematically termed acute and chronic stress, respectively) can interact in unpredictable ways. When animals experience trapping and handling stress before blood, faeces and/or urine is sampled, the interaction of short- and long-term stress can confound interpretation of the data, a fact not always acknowledged in studies of stress in free-living vertebrates. This review examines how stress metrics can be confounded when estimates of HPA-axis activation are collected for free-living vertebrates and outlines some approaches that can be used to help circumvent the influence of potentially confounding factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atchley WR, Gaskins CT, Anderson D (1976) Statistical properties of ratios. I. Empirical results. Syst Biol 25:137–148

    Google Scholar 

  • Baker ML, Gemmell RT (1999) Physiological changes in the brushtail possum (Trichosurus vulpecula) following relocation from Armidale to Brisbane, Australia. J Exp Zool 284:42–49

    Article  PubMed  CAS  Google Scholar 

  • Baker ML, Gemmell E, Gemmell RT (1998) Physiological changes in brushtail possums, Trichosurus vulpecula, transferred from the wild to captivity. J Exp Zool 280:203–212

    Article  PubMed  CAS  Google Scholar 

  • Balcombe JP, Barnard ND, Sandusky C (2004) Laboratory routines cause animal stress. Contemp Topics 43:42–51

    CAS  Google Scholar 

  • Barrett RT, Rikardsen F (1992) Chick growth, fledging periods and adult mass loss of Atlantic Puffins Fratercula arctica during years of prolonged food stress. Colon Waterbirds 15:24–32

    Article  Google Scholar 

  • Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M (2008a) The dynamics of health in wild field vole populations: a haematological perspective. J Anim Ecol 77:984–997

    Article  PubMed  Google Scholar 

  • Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M (2008b) Poor condition and infection: a vicious circle in natural populations. Proc R Soc Lond Ser B Biol Sci (London) 275:1753–1759

    Article  Google Scholar 

  • Bennett A, Hayssen V (2010) Measuring cortisol in hair and saliva from dogs: coat color and pigment differences. Domest Anim Endocrinol 39:171–180

    Article  PubMed  CAS  Google Scholar 

  • Bonier F, Martin PR, Moore IT, Wingfield JC (2009a) Do baseline glucocorticoids predict fitness? Trends Ecol Evol 24:634–642

    Article  PubMed  Google Scholar 

  • Bonier F, Moore IT, Martin PR, Robertson RJ (2009b) The relationship between fitness and baseline glucocorticoids in a passerine bird. Gen Comp Endocrinol 163:208–213

    Article  PubMed  CAS  Google Scholar 

  • Buddle BM, Aldwell FE, Jowett G, Thomson A, Jackson R, Paterson BM (1992) Influence of stress of capture on haematological values and cellular immune responses in the Australian brushtail possum (Trichosurus vulpecula). N Z Vet J 40:155–159

    Article  PubMed  CAS  Google Scholar 

  • Busch DS, Hayward LS (2009) Stress in a conservation context: a discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biol Conserv 142:2844–2853

    Article  Google Scholar 

  • Caughley G, Grice D, Barker R, Brown B (1988) The edge of the range. J Anim Ecol 57:771–785

    Article  Google Scholar 

  • Cavigelli SA (1999) Behavioural patterns associated with faecal cortisol levels in free-ranging female ring-tailed lemurs, Lemur catta. Anim Behav 57:935–944

    Article  PubMed  Google Scholar 

  • Chapman CA, Wasserman MD, Gillespie TR, Speirs ML, Lawes MJ, Saj TL, Ziegler TE (2006) Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? Am J Phys Anthropol 131:525–534

    Article  PubMed  Google Scholar 

  • Cheal PD, Lee AK, Barnett JL (1976) Changes in the haematology of Antechinus stuartii (Marsupialia), and their association with male mortality. Aust J Zool 24:299–311

    Article  Google Scholar 

  • Chow BA, Hamilton J, Alsop D, Cattet MRL, Stenhouse G, Vijayan MM (2010) Grizzly bear corticosteroid binding globulin: cloning and serum protein expression. Gen Comp Endocrinol 167:317–325

    Article  PubMed  CAS  Google Scholar 

  • Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267:1244–1252

    Article  PubMed  CAS  Google Scholar 

  • Clinchy M, Zanette L, Boonstra R, Wingfield JC, Smith JN (2004) Balancing food and predator pressure induces chronic stress in songbirds. Proc R Soc Lond Ser B Biol Sci (London) 271:2473–2479

    Article  Google Scholar 

  • Cockrem J, Silverin B (2002) Variation within and between birds in corticosterone responses of great tits (Parus major). Gen Comp Endocrinol 125:197–206

    Article  PubMed  CAS  Google Scholar 

  • Cockrem JF, Barrett DP, Candy EJ, Potter MA (2009) Corticosterone responses in birds: individual variation and repeatability in Adelie penguins (Pygoscelis adeliae) and other species, and the use of power analysis to determine sample sizes. Gen Comp Endocrinol 163:158–168

    Article  PubMed  CAS  Google Scholar 

  • Colombelli-Négrel D, Kleindorfer S (2008) In superb fairy wrens (Malurus cyaneus), nuptial males have more blood parasites and higher haemoglobin concentration than eclipsed males. Aust J Zool 56:117–121

    Article  Google Scholar 

  • Dantzer B, McAdam AG, Palme R, Boutin S, Boonstra R (2011) How does diet affect fecal steroid hormone metabolite concentrations? An experimental examination in red squirrels. Gen Comp Endocrinol 174(2):124–131

    Article  PubMed  CAS  Google Scholar 

  • Davis GS, Anderson KE, Carroll AS (2000) The effects of long-term caging and molt of single comb white leghorn hens on heterophil to lymphocyte ratios, corticosterone and thyroid hormones. Poult Sci 79:514–518

    PubMed  CAS  Google Scholar 

  • Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772

    Article  Google Scholar 

  • Dehnhard N, Poisbleau M, Demongin L, Quillfeldt P (2011a) Do leucocyte profiles reflect temporal and sexual variation in body condition over the breeding cycle in Southern Rockhopper Penguins? J Ornithol 152:768–769

    Article  Google Scholar 

  • Dehnhard N, Quillfeldt P, Hennicke JC (2011b) Leucocyte profiles and H/L ratios in chicks of Red-tailed Tropicbirds reflect the ontogeny of the immune system. J Comp Physiol B 181:641–648

    Article  PubMed  Google Scholar 

  • Delehanty B, Boonstra R (2009) Impact of live trapping on stress profiles of Richardson’s ground squirrel (Spermophilus richardsonii). Gen Comp Endocrinol 160:176–182

    Article  PubMed  CAS  Google Scholar 

  • Dhabhar F, McEwen B (1997) Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun 11:286–306

    Article  PubMed  CAS  Google Scholar 

  • Dhabhar FS, Miller AH, McEwen BS, Spencer RL (1995) Effects of stress on immune cell distribution: dynamics and hormonal mechanisms. J Immunol 154:5511–5527

    PubMed  CAS  Google Scholar 

  • Dhabhar FS, Miller AH, McEwen BS, Spencer RL (1996) Stress-induced changes in blood leukocyte distribution. Role of adrenal steroid hormones. J Immunol 157:1638–1644

    PubMed  CAS  Google Scholar 

  • Edens FW, Siegel H (1975) Adrenal responses in high and low ACTH response lines of chickens during acute heat stress. Gen Comp Endocrinol 25:64–73

    Article  PubMed  CAS  Google Scholar 

  • Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101:17312–17315

    Article  PubMed  CAS  Google Scholar 

  • Fisher JW, Crook JJ (1962) Influence of several hormones on erythropoiesis and oxygen consumption in the hypophysectomized rat. Blood 19:557–565

    PubMed  CAS  Google Scholar 

  • Fletcher QE, Boonstra R (2006) Impact of live trapping on the stress response of the meadow vole (Microtus pennsylvanicus). J Zool 270:473–478

    Article  Google Scholar 

  • French SS, Fokidis HB, Moore MC (2008) Variation in stress and innate immunity in the tree lizard (Urosaurus ornatus) across an urban–rural gradient. J Comp Physiol B 178:997–1005

    Article  PubMed  Google Scholar 

  • Goldstein DS (2002) Allostasis, homeostats, and the nature of stress. Stress Int J Biol Stress 5:55–58

    Article  Google Scholar 

  • Good T, Khan MZ, Lynch JW (2003) Biochemical and physiological validation of a corticosteroid radioimmunoassay for plasma and fecal samples in oldfield mice (Peromyscus polionotus). Physiol Behav 80:405–411

    Article  PubMed  CAS  Google Scholar 

  • Hamilton J (2008) Evaluation of indicators of stress in populations of polar bears (Ursus maritimus) and grizzly bears (Ursus arctos). Department of Biology, University of Waterloo, Ontario

    Google Scholar 

  • Herring G, Gawlik DE (2007) The role of stress proteins in the study of allostatic overload in birds: use and applicability to current studies in avian ecology. Sci World J 28:1596–1602

    Article  CAS  Google Scholar 

  • Herring G, Cook MI, Gawlik DE, Call EM (2011) Food availability is expressed through physiological stress indicators in nestling white ibis: a food supplementation experiment. Funct Ecol 25(3):682–690

    Article  Google Scholar 

  • Homan RN, Regosin JV, Rodrigues DM, Reed JM, Windmiller BS, Romero LM (2003) Impacts of varying habitat quality on the physiological stress of spotted salamanders (Ambystoma maculatum). Anim Conserv 6:11–18

    Article  Google Scholar 

  • Homyack JA (2010) Evaluating habitat quality of vertebrates using conservation physiology tools. Wildl Res 37:332–342

    Article  Google Scholar 

  • Horner GJ, Baker PJ, Nally RM, Cunningham SC, Thomson JR, Hamilton F (2010) Forest structure, habitat and carbon benefits from thinning floodplain forests: managing early stand density makes a difference. For Ecol Manag 259:286–293

    Article  Google Scholar 

  • Hothorn T, Hornik K, Zeileis A (2006) Party: a laboratory for recursive partytioning. R package version 09-0. http://CRANR-projectorg

  • Jain NC (1993) Essentials of veterinary hematology. Wiley-Blackwell, Media, PA

    Google Scholar 

  • Johansson-Sjobeck ML, Dave G, Larsson A, Lewander K, Lidman U (1978) Hematological effects of cortisol in the European eel, Anguilla anguilla L. Comp Biochem Physiol A Physiol 60:165–168

    Article  Google Scholar 

  • Johnson MD (2007) Measuring habitat quality: a review. Condor 109:489–504

    Article  Google Scholar 

  • Johnstone CP, Reina RD, Lill A (2010) Impact of anthropogenic habitat fragmentation on population health in a small, carnivorous marsupial. J Mammal 91:1332–1341

    Article  Google Scholar 

  • Johnstone CP, Lill A, Reina RD (2011) Does habitat fragmentation cause stress in the agile antechinus? A haematological approach. J Comp Physiol B Biochem Syst Environ Physiol 182(1):139–155

    Google Scholar 

  • Jones ME, Barmuta LA (1998) Diet overlap and relative abundance of sympatric dasyurid carnivores: a hypothesis of competition. J Anim Ecol, 410–421

  • Katz RJ, Roth KA, Carroll BJ (1981) Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev 5:247–251

    Article  PubMed  CAS  Google Scholar 

  • Keay JM, Singh J, Gaunt MC, Kaur T (2006) Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: a literature review. J Zoo Wildl Med 37:234–244

    Article  PubMed  Google Scholar 

  • King JM, Bradshaw SD (2010) Stress in an Island kangaroo? The Barrow Island euro, Macropus robustus isabellinus. Gen Comp Endocrinol 167:60–67

    Article  PubMed  CAS  Google Scholar 

  • Kitaysky AS, Kitaiskaia EV, Wingfield JC, Piatt JF (2001) Dietary restriction causes chronic elevation of corticosterone and enhances stress response in Red-legged Kittiwake chicks. J Comp Physiol B 171:701–709

    Article  PubMed  CAS  Google Scholar 

  • Kitaysky AS, Kitaiskaia EV, Piatt JF, Wingfield JC (2006) A mechanistic link between chick diet and decline in seabirds? Proc R Soc B Biol Sci 273:445

    Article  CAS  Google Scholar 

  • Krebs CJ, Boutin S, Boonstra R, Sinclair ARE, Smith JNM, Dale MRT, Martin K, Turkington R (1995) Impact of food and predation on the snowshoe hare cycle. Science 269:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman JR, Martin LB (2010) Captivity affects immune redistribution to skin in a wild bird. Funct Ecol 24:830–837

    Article  Google Scholar 

  • Lada H, Thomson JR, Mac Nally R, Horrocks G, Taylor AC (2007) Evaluating simultaneous impacts of three anthropogenic effects on a floodplain-dwelling marsupial Antechinus flavipes. Biol Conserv 134:527–536

    Article  Google Scholar 

  • Laurance WF (1990) Comparative responses of five arboreal marsupials to tropical forest fragmentation. J Mammal 71:641–653

    Article  Google Scholar 

  • Le Maho Y, Karmann H, Briot D, Handrich Y, Robin JP, Mioskowski E, Cherel Y, Farni J (1992) Stress in birds due to routine handling and a technique to avoid it. Am J Physiol Regul Intergr Comp Physiol 263:775–781

    Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121

    Article  Google Scholar 

  • Lewis SM, Bain BJ, Bates I, Dacie JV (2006) Dacie and Lewis practical haematology. Churchill Livingstone, London

    Google Scholar 

  • Liu J, Mori A (1999) Stress, aging, and brain oxidative damage. Neurochem Res 24:1479–1497

    Article  PubMed  CAS  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98

    Article  Google Scholar 

  • Logan M (2010) Biostatistical design and analysis using R. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Lynn SE, Porter AJ (2008) Trapping initiates stress response in breeding and non-breeding house sparrows Passer domesticus: implications for using unmonitored traps in field studies. J Avian Biol 39:87–94

    Article  Google Scholar 

  • Martínez-Mota R, Valdespino C, Sánchez-Ramos MA, Serio-Silva JC (2007) Effects of forest fragmentation on the physiological stress response of black howler monkeys. Anim Conserv 10:374–379

    Article  Google Scholar 

  • Masello JF, Quillfeldt P (2004) Are haematological parameters related to body condition, ornamentation and breeding success in wild burrowing parrots Cyanoliseus patagonus? J Avian Biol 35:445–454

    Article  Google Scholar 

  • Masello JF, Choconi RG, Helmer M, Kremberg T, Lubjuhn T, Quillfeldt P (2009) Do leucocytes reflect condition in nestling burrowing parrots Cyanoliseus patagonus in the wild? Comp Biochem Physiol Part A 152:176–181

    Article  CAS  Google Scholar 

  • Maule AG, Schreck CB, Kaattari SL (1987) Changes in the immune system of coho salmon (Oncorhynchus kisutch) during the parr-to-smolt transformation and after implantation of cortisol. Can J Fish Aquat Sci 44:161–166

    Article  CAS  Google Scholar 

  • Mazerolle DF, Hobson KA (2002) Physiological ramifications of habitat selection in territorial male ovenbirds: consequences of landscape fragmentation. Oecologia 130:356–363

    Article  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    Article  PubMed  Google Scholar 

  • McLaren GW, Macdonald DW, Georgiou C, Mathews F, Newman C, Mian R (2003) Leukocyte coping capacity: a novel technique for measuring the stress response in vertebrates. Exp Physiol 88:541–546

    Article  PubMed  CAS  Google Scholar 

  • Moore IT, Jessop TS (2003) Stress, reproduction, and adrenocortical modulation in amphibians and reptiles. Horm Behav 43:39–47

    Article  PubMed  CAS  Google Scholar 

  • Moore IT, Mason RT (2001) Behavioral and hormonal responses to corticosterone in the male red-sided garter snake, Thamnophis sirtalis parietalis. Physiol Behav 72:669–674

    Article  PubMed  CAS  Google Scholar 

  • Moore IT, Lemaster MP, Mason RT (2000) Behavioural and hormonal responses to capture stress in the male red-sided garter snake, Thamnophis sirtalis parietalis. Anim Behav 59:529–534

    Article  PubMed  Google Scholar 

  • Moore IT, Greene MJ, Mason RT (2001) Environmental and seasonal adaptations of the adrenocortical and gonadal responses to capture stress in two populations of the male garter snake, Thamnophis sirtalis. J Exp Zool 289:99–108

    Article  PubMed  CAS  Google Scholar 

  • Mortimer L, Lill A (2007) Activity-related variation in blood parameters associated with oxygen transport and chronic stress in little penguins. Aust J Zool 55:249–256

    Article  CAS  Google Scholar 

  • Möstl E, Palme R (2002) Hormones as indicators of stress. Domest Anim Endocrinol 23:67–74

    Article  PubMed  Google Scholar 

  • Müller C, Jenni-Eiermann S, Jenni L (2011) Heterophils/lymphocytes-ratio and circulating corticosterone do not indicate the same stress imposed on Eurasian kestrel nestlings. Funct Ecol 25:566–576

    Article  Google Scholar 

  • Nagy K, Reiczigel J, Harnos A, Schrott A, Kabai P (2010) Tree-based methods as an alternative to logistic regression in revealing risk factors of crib-biting in horses. J Equine Vet Sci 30:21–26

    Article  Google Scholar 

  • Narayan E, Molinia F, Christi K, Morley C, Cockrem J (2010) Urinary corticosterone metabolite responses to capture, and annual patterns of urinary corticosterone in wild and captive endangered Fijian ground frogs (Platymantis vitiana). Aust J Zool 58:189–197

    Article  Google Scholar 

  • Narayan EJ, Molinia FC, Cockrem JF, Hero JM (2012) Individual variation and repeatability in urinary corticosterone metabolite responses to capture in the cane toad (Rhinella marina). Gen Comp Endocrinol 175:284–289

    Article  PubMed  CAS  Google Scholar 

  • Naylor R, Richardson SJ, McAllan BM (2008) Boom and bust: a review of the physiology of the marsupial genus Antechinus. J Comp Physiol B 178:545–562

    Article  PubMed  CAS  Google Scholar 

  • Nephew BC, Kahn SA, Michael Romero L (2003) Heart rate and behavior are regulated independently of corticosterone following diverse acute stressors. Gen Comp Endocrinol 133:173–180

    Article  PubMed  CAS  Google Scholar 

  • Oishi Y, Sodeyama S, Kondo K (1999) Oxidative stress and haematological changes in immobilized rats. Acta Physiol Scand 165:65–69

    Article  PubMed  CAS  Google Scholar 

  • Palmer AR (2000) Quasireplication and the contract of error: lessons from sex ratios, heritabilities and fluctuating asymmetry. Annu Rev Ecol Syst 31:441–480

    Article  Google Scholar 

  • Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891

    Article  Google Scholar 

  • Perdrizet GA (1997) Hans Selye and beyond: responses to stress. Cell Stress Chaperones 2:214–219

    Article  PubMed  CAS  Google Scholar 

  • Popper KR (2003) The open society and its enemies: Hegel and Marx. Routledge Classics, New York

    Google Scholar 

  • Pravosudov VV (2003) Long-term moderate elevation of corticosterone facilitates avian food-caching behaviour and enhances spatial memory. Proc R Soc Lond Ser B Biol Sci (London) 270:2599–2604

    Article  CAS  Google Scholar 

  • Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255

    Article  PubMed  Google Scholar 

  • Romero LM, Reed JM (2005) Collecting baseline corticosterone samples in the field: is under 3 min good enough? Comp Biochem Physiol Part A Mol Integr Physiol 140:73–79

    Article  CAS  Google Scholar 

  • Romero LM, Romero RC (2002) Corticosterone responses in wild birds: the importance of rapid initial sampling. Condor 104:129–135

    Article  Google Scholar 

  • Romero LM, Reed JM, Wingfield JC (2000) Effects of weather on corticosterone responses in wild free-living passerine birds. Gen Comp Endocrinol 118:113–122

    Article  PubMed  CAS  Google Scholar 

  • Rourke MD, Ernstene AC (1930) A method for correcting the erythrocyte sedimentation rate for variations in the cell volume percentage of blood. J Clin Investig 8:545

    Article  PubMed  CAS  Google Scholar 

  • Salvante KG (2006) Techniques for studying integrated immune function in birds. Auk 123:575–586

    Article  Google Scholar 

  • Samali A, Orrenius S (1998) Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones 3:228

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM (1996) Why stress is bad for your brain. Science 273:749–750

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    Article  PubMed  CAS  Google Scholar 

  • Scheuerlein A, Van’t Hof TJ, Gwinner E (2001) Predators as stressors? Physiological and reproductive consequences of predation risk in tropical stonechats (Saxicola torquata axillaris). Proc R Soc Lond Ser B Biol Sci (London) 268:1575–1582

    Article  CAS  Google Scholar 

  • Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass–size residuals: validating body condition indices. Ecology 86:155–163

    Article  Google Scholar 

  • Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32

    Article  Google Scholar 

  • Selye H (1975) Confusion and controversy in the stress field. J Hum Stress 1:37–44

    Article  CAS  Google Scholar 

  • Sheriff MJ, Dantzer B, Delehanty B, Palme R, Boonstra R (2011) Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166(4):869–887

    Article  PubMed  Google Scholar 

  • Siegel HS (1980) Physiological stress in birds. Bioscience 30:529–534

    Article  CAS  Google Scholar 

  • Silberman DM, Wald M, Genaro AM (2002) Effects of chronic mild stress on lymphocyte proliferative response. Participation of serum thyroid hormones and corticosterone. Int Immunopharmacol 2:487–497

    Article  PubMed  CAS  Google Scholar 

  • Simpkiss JL, Devine DP (2003) Responses of the HPA axis after chronic variable stress: effects of novel and familiar stressors. Neuroendocrinol Lett 24:97–103

    PubMed  Google Scholar 

  • Singleton GR (1989) Population dynamics of an outbreak of house mice (Mus domesticus) in the mallee wheatlands of Australia-hypothesis of plague formation. J Zool 219:495–515

    Article  Google Scholar 

  • Stefanski V (2000) Social stress in laboratory rats: hormonal responses and immune cell distribution. Psychoneuroendocrinology 25:389–406

    Article  PubMed  CAS  Google Scholar 

  • Stevenson RD, Woods WA Jr (2006) Condition indices for conservation: new uses for evolving tools. Integr Comp Biol 46:1169

    Article  PubMed  CAS  Google Scholar 

  • Suckling GC (1978) A hair sampling tube for the detection of small mammals in trees. Aust Wildl Res 5:249–252

    Article  Google Scholar 

  • Suorsa P, Helle H, Koivunen V, Huhta E, Nikula A, Hakkarainen H (2004) Effects of forest patch size on physiological stress and immunocompetence in an area-sensitive passerine, the Eurasian treecreeper (Certhia familiaris): an experiment. Proc R Soc Lond Ser B Biol Sci (London) 271:435–440

    Article  Google Scholar 

  • Tamashiro KLK, Nguyen MMN, Sakai RR (2005) Social stress: from rodents to primates. Front Neuroendocrinol 26:27–40

    Article  PubMed  Google Scholar 

  • Teague CR, Dhabhar FS, Barton RH, Beckwith-Hall B, Powell J, Cobain M, Singer B, McEwen BS, Lindon JC, Nicholson JK (2007) Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague–Dawley rats. J Proteome Res 6:2080–2093

    Article  PubMed  CAS  Google Scholar 

  • Thaker M, Lima SL, Hews DK (2009) Acute corticosterone elevation enhances antipredator behaviors in male tree lizard morphs. Horm Behav 56:51–57

    Article  PubMed  CAS  Google Scholar 

  • Tilgar V, Saag P, Külavee R, Mänd R (2010) Behavioral and physiological responses of nestling pied flycatchers to acoustic stress. Horm Behav 57:481–487

    Article  PubMed  Google Scholar 

  • Tsigos C, Chrousos GP (2002) Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53:865–871

    Article  PubMed  Google Scholar 

  • Tyler RD, Cowell RL (1996) Classification and diagnosis of anaemia. Comp Haematol Int 6:1–16

    Article  Google Scholar 

  • Vleck CM, Vertalino N, Vleck D, Bucher TL (2000) Stress, corticosterone, and heterophil to lymphocyte ratios in free-living Adélie Penguins. Condor 102:392–400

    Article  Google Scholar 

  • Walker BG, Boersma PD, Wingfield JC (2005) Field endocrinology and conservation biology. Integr Comp Biol 45:12

    Article  PubMed  Google Scholar 

  • Wasser SK, Bevis K, King G, Hanson E (1997) Noninvasive physiological measures of disturbance in the northern spotted owl. Conserv Biol 11:1019–1022

    Article  Google Scholar 

  • Wasser SK, Hunt KE, Brown JL, Cooper K, Crockett CM, Bechert U, Millspaugh JJ, Larson S, Monfort SL (2000) A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. Gen Comp Endocrinol 120:260–275

    Article  PubMed  CAS  Google Scholar 

  • Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21:38–46

    Article  PubMed  Google Scholar 

  • Wingfield JC, Kitaysky AS (2002) Endocrine responses to unpredictable environmental events: stress or anti-stress hormones? Integr Comp Biol 42:600–609

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Sapolsky RM (2003) Reproduction and resistance to stress: when and how. J Neuroendocrinol 15:711–724

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Smith JP, Farner DS (1982) Endocrine responses of white-crowned sparrows to environmental stress. Condor 84:399–409

    Article  Google Scholar 

  • Wingfield JC, Vleck CM, Moore MC (1992) Seasonal changes of the adrenocortical response to stress in birds of the Sonoran Desert. J Exp Zool 264:419–428

    Article  PubMed  CAS  Google Scholar 

  • Zanette L, Smith JNM, van Oort H, Clinchy M (2003) Synergistic effects of food and predators on annual reproductive success in song sparrows. Proc R Soc Lond Ser B Biol Sci (London) 270:799–803

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science+Business Media, New York

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank all those who provided feedback on the ideas presented here at the ANZSCPB conference in Tasmania, 2011. We would also like to thank the four anonymous reviewers, whose comments have helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. Johnstone.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnstone, C.P., Reina, R.D. & Lill, A. Interpreting indices of physiological stress in free-living vertebrates. J Comp Physiol B 182, 861–879 (2012). https://doi.org/10.1007/s00360-012-0656-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0656-9

Keywords

Navigation