Skip to main content
Log in

Cupiennius salei: biomechanical properties of the tibia–metatarsus joint and its flexing muscles

Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Hunting spiders are well adapted to fast locomotion. Space saving hydraulic leg extension enables leg segments, which consist almost soley of flexor muscles. As a result, the muscle cross sectional area is high despite slender legs. Considering these morphological features in context with the spider’s segmented C-shaped legs, these specifics might influence the spider’s muscle properties. Moreover, these properties have to be known for modeling of spider locomotion. Cupiennius salei (n = 5) were fixed in a metal frame allowing exclusive flexion of the tibia–metatarsus joint of the second leg (counted from anterior). Its flexing muscles were stimulated supramaximally using needle electrodes. Accounting for the joint geometry, the force–length and the force–velocity relationships were determined. The spider muscles produce 0.07 N cm maximum isometric moment (corresponding to 25 N/cm2 maximum stress) at 160° tibia–metatarsus joint angle. When overextended to the dorsal limit at approximately 200°, the maximum isometric moments decrease to 72%, and, when flexed to the ventral hinge stop at 85°, they drop to 11%. The force–velocity relation shows the typical hyperbolic shape. The mean maximum shortening velocity is 5.7 optimum muscle lengths per second and the mean curvature (a/F iso) of the Hill-function is 0.34. The spider muscle’s properties which were determined are similar to those of other species acting as motors during locomotion (working range, curvature of Hill hyperbola, peak power at the preferred speeds), but they are relatively slow. In conjunction with the low mechanical advantage (muscle lever/load arm), the arrangement of three considerably actuated joints in series may nonetheless enable high locomotion velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn AN, Full RJ (2002) A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect. J Exp Biol 205:379–389

    CAS  PubMed  Google Scholar 

  • Ahn AN, Meijer K, Full RJ (2006) In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innervated by the same motor neuron. J Exp Biol 209:3370–3382

    Article  CAS  PubMed  Google Scholar 

  • Alexander RM (1985) The maximum forces exerted by animals. J Exp Biol 115:231–238

    CAS  PubMed  Google Scholar 

  • Anderson JF, Prestwich KN (1975) The fluid pressure pumps of spiders (Chelicerata, Araneae). Z Morph Tiere 81:257–277

    Article  Google Scholar 

  • Baratta RV, Solomonow M, Best R, Zembo M, D’Ambrosia R (1995) Force–velocity relations of nine load-moving skeletal muscles. Med Biol Eng Comput 33:537–544

    Article  CAS  PubMed  Google Scholar 

  • Bennett AF (1985) Temperature and muscle. J Exp Biol 115:333–344

    CAS  PubMed  Google Scholar 

  • Biewener AA (1989) Scaling body support in mammals: limb posture and muscle mechanics. Science 245:45–48

    Article  CAS  PubMed  Google Scholar 

  • Biewener AA (1998) Muscle function in vivo: a comparison of muscles used for elastic energy storage savings versus muscles used to generate power. Am Zool 38:703–717

    CAS  Google Scholar 

  • Blickhan R, Barth FG (1985) Strains in the exoskeleton of spiders. J Comp Physiol A 157:115–147

    Google Scholar 

  • Blickhan R, Wagner H, Seyfahrt A (2003) Brain or muscles? Recent Res Devel Biomech 1:215–245

    Google Scholar 

  • Blickhan R, Petkun S, Weihmann T, Karner M (2005) Schnelle Bewegungen bei Arthropoden: Strategien und Mechanismen. In: Pfeiffer F, Cruse H (eds) Autonomes Laufen. Springer, Berlin, pp 19–45

    Chapter  Google Scholar 

  • Blickhan R, Seyfarth A, Geyer H, Grimmer S, Wagner H, Gunther M (2007) Intelligence by mechanics. Philos Transact A Math Phys Eng Sci 365:199–220

    Article  PubMed  Google Scholar 

  • Brown IE, Loeb GE (2000) A reductionistic approach to creating and using neuro-musculoskeletal models. In: Winters JM, Crago PE (eds) Biomechanics and neural control of posture and movement. Springer, New York

    Google Scholar 

  • Brown IE, Cheng EJ, Loeb GE (1999) Measured and modeled properties of mammalian skeletal muscle. II. The effects of stimulus frequency on force–length and force–velocity relationships. J Muscle Res Cell Motil 20:627–643

    Article  CAS  PubMed  Google Scholar 

  • Clarke J (1986) The comparative functional morphology of the leg joints and muscles of five spiders. Bull Brarachnol Soc 7:37–47

    Google Scholar 

  • Close RI (1972) Dynamic properties of mammalian skeletal muscles. Physiol Rev 52:129–197

    CAS  PubMed  Google Scholar 

  • Curtin NA, Gardner-Medwin AR, Woledge RC (1998) Predictions of the time course of force and power output by dogfish white muscle fibres during brief tetani. J Exp Biol 201:103–114

    CAS  PubMed  Google Scholar 

  • de Haan A (1998) The influence of stimulation frequency on force–velocity characteristics of in situ rat medial gastrocnemius muscle. Exp Physiol 83:77–84

    PubMed  Google Scholar 

  • Dillon LS (1952) The myology of the araneid leg. J Morphol 90:467–480

    Article  Google Scholar 

  • Edman KA (2005) Contractile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers. J Exp Biol 208:1905–1913

    Article  CAS  PubMed  Google Scholar 

  • Ehlers M (1939) Untersuchungen über Formen aktiver Lokomotion bei Spinnen. Zool Jb Syst 72:373 ff

    Google Scholar 

  • Ellis CH (1944) The mechanism of extension in the legs of spiders. Biol Bull 86:41–50

    Article  Google Scholar 

  • Fenn WO, Marsh BS (1935) Muscular force at different speeds of shortening. J Physiol 85:277–297

    CAS  PubMed  Google Scholar 

  • Full R, Ahn A (1995) Static forces and moments generated in the insect leg: comparison of a three-dimensional musculo-skeletal computer model with experimental measurements. J Exp Biol 198:1285–1298

    PubMed  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    CAS  PubMed  Google Scholar 

  • Guschlbauer C, Scharstein H, Buschges A (2007) The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle. J Exp Biol 210:1092–1108

    Article  PubMed  Google Scholar 

  • Herzog W, Leonard TR, Renaud JM, Wallace J, Chaki G, Bornemisza S (1992) Force–length properties and functional demands of cat gastrocnemius, soleus and plantaris muscles. J Biomech 25:1329–1335

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc London Ser B, Biol Sci 126:136–195

    Article  Google Scholar 

  • Josephson RK (1984) Contraction dynamics of flight and stridulatory muscles of tettigoniid insects. J Exp Biol 108:77–96

    Google Scholar 

  • Josephson RK (1993) Contraction dynamics and power output of skeletal muscle. Annu Rev Physiol 55:527–546

    Article  CAS  PubMed  Google Scholar 

  • Joyce GC, Rack PM, Westbury DR (1969) The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements. J Physiol 204:461–474

    CAS  PubMed  Google Scholar 

  • Leedham JS, Dowling JJ (1995) Force–length, torque–angle and EMG-joint angle relationships of the human in vivo biceps brachii. Eur J Appl Physiol Occup Physiol 70:421–426

    Article  CAS  PubMed  Google Scholar 

  • Lutz GJ, Rome LC (1996) Muscle function during jumping in frogs. II. Mechanical properties of muscle: implications for system design. Am J Physiol 271:C571–578

    CAS  PubMed  Google Scholar 

  • Maganaris CN (2001) Force–length characteristics of in vivo human skeletal muscle. Acta Physiol Scand 172:279–285

    Article  CAS  PubMed  Google Scholar 

  • Maganaris CN (2003) Force–length characteristics of the in vivo human gastrocnemius muscle. Clin Anat 16:215–223

    Article  PubMed  Google Scholar 

  • Maier L, Root TM, Seyfarth EA (1987) Heterogeneity of spider leg muscle: histochemistry and electrophysiology of identified fibers in the claw levator. J Comp Physiol B, Biochem Syst Environ Physiol 157:285–294

    Article  Google Scholar 

  • Melchers M (1967) Der Beutefang von Cupiennius salei Keyserling (Ctenidae). Z Morph Ökol Tiere 58:321–346

    Article  Google Scholar 

  • Mendez J, Keys A (1960) Density and composition of mammalian muscle. Metabolism 9:184–188

    CAS  Google Scholar 

  • Moya-Larano J, Vinkovic D, De Mas E, Corcobado G, Moreno E (2008) Morphological evolution of spiders predicted by pendulum mechanics. PLoS ONE 3:e1841

    Article  PubMed  Google Scholar 

  • Parry DA, Brown RHJ (1959) The hydraulic mechanism of the spider leg. J Exp Biol 36:423–433

    Google Scholar 

  • Prange HD (1977) The scaling and mechanics of arthropod exoskeletons. In: Pedley TJ (ed) Scale effects in animal locomotion. Academic Press, London, pp 169–181

    Google Scholar 

  • Ranatunga KW, Thomas PE (1990) Correlation between shortening velocity, force–velocity relation and histochemical fibre-type composition in rat muscles. J Muscle Res Cell Motil 11:240–250

    Article  CAS  PubMed  Google Scholar 

  • Rathmayer W (1965) Neuromuscular transmission in a spider and the effect of calcium. Comp Biochem Physiol 14:673

    Article  CAS  PubMed  Google Scholar 

  • Rathmayer W (1990) Inhibition through neurons of the common inhibitory type (CI-neurons) in crab muscle. In: Krentz WD, Tautz J, Reichert H, Mulloney B, Wiese K (eds) Frontiers in crustacean neurobiology. Birkhäuser, Basel, pp 271–278

    Google Scholar 

  • Rathmayer W (1996) Motorische Steuerung bei Invertebraten. In: Dudel J, Menzel R, Schmidt RF (eds) Neurowissenschaft. Springer, Berlin, pp 167–190

    Google Scholar 

  • Reinhardt L (2006) Gleichförmige Lokomotion der Jagdspinne Cupiennius salei (KEYSERLING 1877): 3D-Beinsegmentkinematik. Thesis, Friedrich-Schiller-University, Jena

  • Rode C, Siebert T, Herzog W, Blickhan R (2009) The effects of parallel and series elastic components on the active cat soleus force–length relationship. J Mech Med Biol 9:105–122

    Article  Google Scholar 

  • Rome LC, Funke RP, Alexander RM, Lutz G, Aldridge H, Scott F, Freadman M (1988) Why animals have different muscle fibre types. Nature 335:824–827

    Article  CAS  PubMed  Google Scholar 

  • Ruhland M, Rathmayer W (1978) Die Beinmuskulatur und ihre Innervation bei der Vogelspinne Dugesiella hentzi (Ch.) (Araneae, Aviculariidae). Zoomorphology 89:33–46

    Article  Google Scholar 

  • Scott SH, Brown IE, Loeb GE (1996) Mechanics of feline soleus: I. Effect of fascicle length and velocity on force output. J Muscle Res Cell Motil 17:207–219

    Article  CAS  PubMed  Google Scholar 

  • Seyfarth EA, Eckweiler W, Hammer K (1985) Proprioceptors and sensory nerves in the legs of a spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology 105:190–196

    Article  Google Scholar 

  • Sherman RG (1985) Neural control of the heartbeat and skeletal muscle in spiders and scorpions. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin, pp 319–336

    Google Scholar 

  • Siebert T, Sust M, Thaller S, Tilp M, Wagner H (2007) An improved method to determine neuromuscular properties using force laws—from single muscle to applications in human movements. Hum Mov Sci 26:320–341

    Article  CAS  PubMed  Google Scholar 

  • Siebert T, Rode C, Herzog W, Till O, Blickhan R (2008) Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biol Cybern 98:133–143

    Article  PubMed  Google Scholar 

  • Stewart DM, Martin AW (1974) Blood pressure in the tarantula Dugesiella hentzi. J Comp Physiol 88:141–172

    Article  Google Scholar 

  • Till O, Siebert T, Rode C, Blickhan R (2008) Characterization of isovelocity extension of activated muscle: a Hill-type model for eccentric contractions and a method for parameter determination. J Theor Biol 255:176–187

    Article  PubMed  Google Scholar 

  • Wagner H, Blickhan R (1999) Stabilizing function of skeletal muscles: an analytical investigation. J Theor Biol 199:163–179

    Article  CAS  PubMed  Google Scholar 

  • Wagner H, Blickhan R (2003) Stabilizing function of antagonistic neuromusculoskeletal systems: an analytical investigation. Biol Cybern 199:163–179

    Google Scholar 

  • Wagner H, Siebert T, Ellerby DJ, Marsh RL, Blickhan R (2005) ISOFIT: a model-based method to measure muscle–tendon properties simultaneously. Biomech Model Mechanobiol 4:10–19

    Article  CAS  PubMed  Google Scholar 

  • Weihmann T, Blickhan R (2006) Legs operate different during steady locomotion and escape in a wandering spider. J Biomech 39(Suppl 1):361

    Article  Google Scholar 

  • Wells JB (1965) Comparison of mechanical properties between slow and fast mammalian muscles. J Physiol 178:252–269

    CAS  PubMed  Google Scholar 

  • Whitehead WF, Rempel JG (1959) A study of the musculature of the black widow spider, Latrodectus mactans (Fabr.). Can J Zool 37(6):831–870

    Google Scholar 

  • Woittiez RD, Huijing PA, Boom HB, Rozendal RH (1984) A three-dimensional muscle model: a quantified relation between form and function of skeletal muscles. J Morphol 182:95–113

    Article  CAS  PubMed  Google Scholar 

  • Woledge RC (1998) Possible effects of fatigue on muscle efficiency. Acta Physiol Scand 162:267–273

    Article  CAS  PubMed  Google Scholar 

  • Zebe E, Rathmayer W (1968) An electron microscopical study of spider muscles. Z Zellforsch Mikrosk Anat 92:377–387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the German Science Foundation (DFG) for support of work (Bl 236/14-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Siebert.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siebert, T., Weihmann, T., Rode, C. et al. Cupiennius salei: biomechanical properties of the tibia–metatarsus joint and its flexing muscles. J Comp Physiol B 180, 199–209 (2010). https://doi.org/10.1007/s00360-009-0401-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-009-0401-1

Keywords

Navigation