Skip to main content
Log in

Vasotocin has the potential to inhibit basolateral Na+/K+-pump current across isolated skin of tree frog in vitro, via its V2-type receptor/cAMP pathway

Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Adult frog skin transports Na+ from the apical to the basolateral side across the skin. Antidiuretic hormone (ADH) is involved in the regulation of Na+ transport in both mammals and amphibians. We investigated the effect of arginine vasotocin (AVT), the ADH of amphibians, on the short-circuit current (SCC) across intact skin and on the basolateral Na+/K+-pump current across apically nystatin-permeabilized skin of the tree frog, Hyla japonica, in which the V2-type ADH receptor is expressed in vitro. In intact skin, 1 pM AVT had no effect on the SCC, but 10 nM AVT was sufficient to stimulate the SCC since 10 nM and 1 μM of AVT increased the SCC 3.2- and 3.4-fold, respectively (> 0.9). However, in permeabilized skin, AVT (1 μM) decreased the Na+/K+-pump current to 0.79 times vehicle control. Similarly, 500 μM of 8Br-cAMP increased the SCC 3.2-fold, yet 1 mM of 8Br-cAMP decreased the Na+/K+-pump current to 0.76 times vehicle control. Arachidonic acid (10−5 M) tended to decrease the Na+/K+-pump current. To judge from these in vitro experiments, AVT has the potential to inhibit the basolateral Na+/K+-pump current via the V2-type receptor/cAMP pathway in the skin of the tree frog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADH:

Antidiuretic hormone

AVT:

Arginine vasotocin

8Br-cAMP:

8-Bromoadenosine 3′, 5′-cyclic monophosphate

SCC:

Short-circuit current

ENaC:

Epithelial sodium channel

CCD:

Cortical collecting duct

References

  • Acharjee S, Do-Rego J-L, Oh DY, Mon JS, Ahn RS, Lee K, Bai DG, Vaudry H, Kwon HB, Seong JY (2004) Molecular cloning, pharmacological characterization, and histochemical distribution of frog vasotocin and mesotocin receptors. J Mol Endocrinol 33:293–313

    Article  PubMed  CAS  Google Scholar 

  • Blazer-Yost BL, Nofziger C (2005) Phosphoinositide lipid second messengers: new paradigms for transepithelial signal transduction. Pflügers Arch-Eur J Physiol 450:75–82

    Article  CAS  Google Scholar 

  • Blot-Chabaud M, Coutry NC, Laplace M, Bonvalet J-P, Farman N (1996) Role of protein phosphatase in the regulation of Na+-K+-ATPase by vasopressin in the cortical collecting duct. J Membr Biol 153:233–239

    Article  PubMed  CAS  Google Scholar 

  • Carranza ML, Rousselot M, Chibalin AV, Bertorello AM, Favre H, Féraille E (1998) Protein kinase A induces recruitment of active Na+, K+-ATPase units to the plasma membrane of rat proximal convoluted tubule cells. J Physiol 511:235–243

    Article  PubMed  CAS  Google Scholar 

  • Coutry N, Farman N, Bonvalet JP, Blot-Chabau M (1995) Synergistic action of vasopressin and aldosterone on basolateral Na+-K+-ATPase in the cortical collecting duct. J Membr Biol 145:99–106

    PubMed  CAS  Google Scholar 

  • Cox TC, Alvarado RH (1983) Nystatin studies of the skin of larval Rana catesbeiana. Am J Physiol 244(13):R58–R65

    Google Scholar 

  • Deyrup IJ (1964) Water balance and kidney. In: Moore JA (ed) Physiology of the amphibia. Academic Press, New York, pp 251–328

    Google Scholar 

  • Ecelbarger CA, Kim G-H, Terris J, Masilamani S, Mitchell C, Reyes I, Verbalis JG, Knepper MA (2000) Vasopressin-mediated regulation of epithelial sodium channel abundance in rat kidney. Am J Physiol Renal Physiol 279:F46–F53

    PubMed  CAS  Google Scholar 

  • Farquhar MG, Palade GE (1965) Cell junctions in amphibian skin. J Cell Biol 26:263–291

    Article  PubMed  CAS  Google Scholar 

  • Féraille E, Doucet A (2001) Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 81:345–418

    PubMed  Google Scholar 

  • Hasumuma I, Sakai T, Nakada T, Toyoda F, Namiki H, Kikuyama S (2007) Molecular cloning of three types of arginine vasotocin receptor in the newt, Cynops pyrrhogaster. Gen Comp Endocrinol 151:252–258

    Article  CAS  Google Scholar 

  • Hayslett JP, Macala LJ, Smallwood JI, Kalghatgi L, Gassala-Herraiz J, Isales C (1995) Vasopressin-stimulated electrogenic sodium transport in A6 cells is linked to a Ca2+-mobilizing signal mechanism. J Biol Chem 270:16082–16088

    Article  PubMed  CAS  Google Scholar 

  • Helman SI, Cox TC, Van Driessche W (1983) Hormonal control of apical membrane Na transport in epithelia. J Gen Physiol 82:201–220

    Article  PubMed  CAS  Google Scholar 

  • Kleyman TR, Ernst SA, Coupaye-Gerard B (1994) Arginine vasopressin and forskolin regulate apical cell surface expression of epithelial Na channels in A6 cells. Am J Physiol 266:F506–F511

    PubMed  CAS  Google Scholar 

  • Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308

    Article  PubMed  CAS  Google Scholar 

  • Kohno S, Kamishima Y, Iguchi T (2003) Molecular cloning of an anuran V2 type [Arg8] vasotocin receptor and mesotocin receptor: functional characterization and tissue expression in the Japanese tree frog (Hyla japonica). Gen Comp Endocrinol 132:485–498

    Article  PubMed  CAS  Google Scholar 

  • Konno N, Hyodo S, Takei Y, Matsuda K, Uchiyama M (2005) Plasma aldosterone, angiotensin II, and arginin vasotocin concentrations in the toad, Bufo marinus, following osmotic treatment. Gen Comp Endocrinol 140:86–93

    Article  PubMed  CAS  Google Scholar 

  • Li D, Belusa R, Nowicki S, Aperia A (2000) Arachidonic acid metabolic pathways regulating activity of renal Na+-K+-ATPase are age dependent. Am J Physiol Renal Physiol 278:F823–F829

    PubMed  CAS  Google Scholar 

  • Lichtenstein NS, Leaf A (1965) Effect of amphotericin B on the permeability of the toad bladder. J Clin Invest 44:1328–1343

    Article  PubMed  CAS  Google Scholar 

  • Maejima S, Yamada T, Hamada T, Matsuda K, Uchiyama M (2008) Effects of hypertonic stimuli and arginine vasotocin (AVT) on water absorption response in Japanese treefrog, Hyla japonica. Gen Comp Endocrinol (in press). doi:10.1016/j.ygcen.2008.04.014

  • Martinez-Palomo A, Erlij D, Bracho H (1971) Localization of permeability barriers in the frog skin epithelium. J Cell Biol 50:277–287

    Article  PubMed  CAS  Google Scholar 

  • Marunaka Y (1997) Hormonal and osmotic regulation of NaCl transport in renal distal nephron epithelium. Jpn J Physiol 47:499–511

    Article  PubMed  CAS  Google Scholar 

  • Marunaka Y, Eaton DC (1991) Effects of vasopressin and cAMP on single amiloride-blockable Na channels. Am J Physiol Cell Physiol 260:C1071–C1084

    CAS  Google Scholar 

  • Mordasini D, Bustamante M, Rousselot M, Martin P-Y, Hasler U, Féraille E (2005) Stimulation of Na+ transport by AVP is independent of PKA phosphorylation of the Na–K-ATPase in collecting duct principal cells. Am J Physiol Renal Physiol 289:F1031–F1039

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R (1997) Correlation between transepithelial Na+ transport and transepithelial water movement across isolated frog skin (Rana esculenta). J Membr Biol 159:61–69

    Article  PubMed  CAS  Google Scholar 

  • Rossier BC (2002) Hormonal regulation of the epithelial sodium channel ENaC: N or Po? J Gen Physiol 120:67–70

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Cohen HT, Katz AI (1992) Intracellular signaling in the regulation of renal Na–K-ATPase. I. Role of cyclic AMP and phospholipase A2. J Clin Invest 89:1496–1500

    Article  PubMed  CAS  Google Scholar 

  • Shane MA, Nofziger C, Blazer-Yost BL (2006) Hormonal regulation of the epithelial Na+ channel: from amphibians to mammals. Gen Comp Endocrinol 147:85–92

    Article  PubMed  CAS  Google Scholar 

  • Silver RB, Palmer LG (1989) 8BrcAMP-induced capacitance and transport of H2O and Na in skin and urinary bladder of urodele amphibians. Am J Physiol 256(25):C1145–C1152

    Google Scholar 

  • Summa S, Camargo SMR, Bauch C, Zecevice M, Verry F (2004) Isoform specificity of human Na+, K+-ATPase localization and aldosterone regulation in mouse kidney cells. J Physiol 555:355–364

    Article  PubMed  CAS  Google Scholar 

  • Takada M, Hokari S (2007) Prolactin increases Na+ transport across adult bullfrog skin via stimulation of both ENaC and Na+/K+-pump. Gen Comp Endocrinol 151:325–331

    Article  PubMed  CAS  Google Scholar 

  • Tomita K, Owada A, Iino Y, Yoshiyama N, Shiigai T (1987) Effect of vasopressin on Na–K-ATPase activity in rat cortical collecting duct. Am J Physiol 253(Renal Fluid Electrolyte Physiol 22):F874–F879

    Google Scholar 

  • Uchiyama M, Konno N (2006) Hormonal regulation of ion and water transport in anuran amphibians. Gen Comp Endocrinol 147:54–61

    Article  PubMed  CAS  Google Scholar 

  • Urbach V, Van Kerkhove E, Maguire D, Harvey BJ (1996) Rapid activation of KATP channels by aldosterone in principal cells of frog skin. J Physiol 491:111–120

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All procedures complied with the relevant Japanese law governing animal experimentation (Law no. 105, notification no. 000398). We greatly thank Dr. Suge (Saitama Medical University) for her valuable advice on the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Takada.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takada, M., Fujimaki, K. & Hokari, S. Vasotocin has the potential to inhibit basolateral Na+/K+-pump current across isolated skin of tree frog in vitro, via its V2-type receptor/cAMP pathway. J Comp Physiol B 178, 957–962 (2008). https://doi.org/10.1007/s00360-008-0278-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-008-0278-4

Keywords

Navigation