Skip to main content

Advertisement

Log in

A new method to measure intestinal activity of P-glycoprotein in avian and mammalian species

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Permeability-glycoprotein (Pgp) actively exports numerous potentially toxic compounds once they diffuse into the cell membrane of intestinal epithelial cells. We adapted the everted sleeve technique to make the first measures of intestinal Pgp function in an avian species (chicken) and in wild mammalian species, and compared them to laboratory rats. Tissues maintained both structural and functional integrity, and our method offers advantages over other in vitro techniques by using smaller intestinal sections (1 cm), and shorter incubation times (8–12 min). To determine Pgp function, we compared accumulation of [3H]-digoxin in sleeves incubated in Ringer solution with and without a transport-saturating concentration of a competitive inhibitor, cyclosporin A. We demonstrated significant variation in Pgp activity within individuals along the intestine, between populations fed different diets, and between species (laboratory rats had one-third to one-fifth the Pgp activity of wild rodents). In chicken, we also tested the effect of natural metabolites on digoxin accumulation. We found that among flavonoids, genistein (200 μM), found in soy and other legumes, but not quercetin (10, 30, 100, 330 μM) or the 3-β-glycoside isoquercetrin (100 μM), significantly increased digoxin accumulation. Among fungal metabolites, sterigmatocystin (5 μM), but not aflatoxin B1 (5 μM), significantly increased digoxin accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

AFB1:

Aflatoxin-B1

CsA:

Cyclosporin A

C.V.:

Coefficient of variation

DMSO:

Dimethyl sulfoxide

GEN:

Genistein

ISOQ:

Isoquercetrin

MDR:

Multi-drug resistance

PEG:

Poly-ethylene glycol

Pgp:

Permeability-glycoprotein

QUERC:

Quercetin

SGLT-1:

Sodium-dependent glucose transporter

ST:

Sterigmatocystin

References

  • Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    Article  CAS  PubMed  Google Scholar 

  • Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) P-glycoprotein: from genomics to mechanism. Oncogene 22:7468–7485

    Article  CAS  PubMed  Google Scholar 

  • Bard SM (2000) Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms. Aquat Toxicol 48:357–389

    Article  CAS  PubMed  Google Scholar 

  • Barnes DM (2001) Expression of P-glycoprotein in chickens. Comp Biochem Physiol A 130:301–310

    CAS  Google Scholar 

  • Barthe L, Bessouet M, Woodley JF, Houin G (1998) The improved everted gut sac: a simple method to study intestinal P-glycoprotein. Int J Pharm Amsterdam 173(1):255–258

    Google Scholar 

  • Bhat UG, Winter MA, Pearce HL, Beck WT (1995) A structure-function relationship among reserpine and yohimbine analogs in their ability to increase expression of MDR-1 and P-glycoprotein in a human colon-carcinoma cell-line. Mol Pharmacol 48:682–689

    CAS  PubMed  Google Scholar 

  • Brady JM, Cherrington NJ, Hartley DP, Buist SC, Li N, Klaassen CD (2002) Tissue distribution and chemical induction of multiple drug resistance genes in rats. Drug Metab Dispos 30:838–844

    Article  CAS  PubMed  Google Scholar 

  • Burt RK, Thorgeirsson SS (1988) Coinduction of MDR-1 multidrug-resistance and cytochrome P-450 genes in rat liver by xenobiotics. J Natl Cancer Inst 80:1383–1386

    CAS  PubMed  Google Scholar 

  • Castro AF, Altenberg GA (1997) Inhibition of drug transport by genistein in multidrug- resistant cells expressing P-glycoprotein. Biochem Pharmacol 53:89–93

    Article  PubMed  Google Scholar 

  • Conseil G, Baubichon-Cortay H, Dayan G, Jault JM, Barron D, Di Pietro A (1998) Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc Natl Acad Sci USA 95:9831–9836

    Article  CAS  PubMed  Google Scholar 

  • Critchfield JW, Welsh CJ, Phang JM, Yeh GC (1994) Modulation of adriamycin(R) accumulation and efflux by flavonoids in HCT-15 colon cells - activation of P-glycoprotein as a putative mechanism. Biochem Pharmacol 48:1437–1445

    Article  CAS  PubMed  Google Scholar 

  • Edelmann HML, Duchek P, Rosenthal FE, Foger N, Glackin C, Kane SE, Kuchler K (1999) CMDR1, a chicken P-glycoprotein, confers multidrug resistance and interacts with estradiol. Biol Chem 380:231–241

    Article  CAS  PubMed  Google Scholar 

  • Epel D (1998) Use of multidrug transporters as first lines of defense against toxins in aquatic organisms. Comp Biochem Physiol A 120:23–28

    Google Scholar 

  • Fardel O, Lecureur V, Corlu A, Guillouzo A (1996) P-glycoprotein induction in rat liver epithelial cells in response to acute 3-methylcholanthrene treatment. Biochem Pharmacol 51:1427–1436

    Article  CAS  PubMed  Google Scholar 

  • Ford JM, Hait WN (1990) Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev 42:155–99

    CAS  PubMed  Google Scholar 

  • Geick A, Eichelbaum M, Burk O (2001) Nuclear receptor response elements mediate induction of intestinal MDR-1 by rifampin. J Biol Chem 276:14581–14587

    Article  CAS  PubMed  Google Scholar 

  • Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, Kroemer HK (1999) The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 104:147–153

    CAS  PubMed  Google Scholar 

  • Hunter J, Hirst BH (1997) Intestinal secretion of drugs. The role of P-glycoprotein and related drug efflux systems in limiting oral drug absorption. Adv Drug Deliv Rev 25:129–157

    Article  CAS  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    CAS  PubMed  Google Scholar 

  • Karasov WH, Debnam ES (1987) Rapid adaptation of intestinal glucose-transport—a brush-border or basolateral phenomenon. Am J Physiol 253:G54–G61

    CAS  PubMed  Google Scholar 

  • Karasov W, Diamond JM (1983) A simple method for measuring intestinal solute uptake in vitro. J Comp Physiol B Biochem Syst Environ 152:105–116

    CAS  Google Scholar 

  • Karasov WH, Solberg DH, Diamond JM (1985) What transport adaptations enable mammals to absorb sugars and amino-acids faster than reptiles. Am J Physiol 249:G271-G283

    CAS  PubMed  Google Scholar 

  • Kurelec B (1992) The multixenobiotic resistance mechanism in aquatic organisms. Crit Rev Toxicol22:23–43

    CAS  PubMed  Google Scholar 

  • Lan LB, Ayesh S, Lyubimov E, Pashinsky I, Stein WD (1996) Kinetic parameters for reversal of the multidrug pump as measured for drug accumulation and cell killing. Cancer Chemother Pharmacol 38:181–190

    Article  CAS  PubMed  Google Scholar 

  • Lo YL, Huang JD (1999) Comparison of effects of natural or artificial rodent diet on etoposide absorption in rats. In Vivo 13:51–55

    CAS  PubMed  Google Scholar 

  • Makhey VD, Guo AL, Norris DA, Hu PD, Yan JS, Sinko PJ (1998) Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm Res 15:1160–1167

    Article  CAS  PubMed  Google Scholar 

  • Mickley LA, Bates SE, Richert ND, Currier S, Tanaka S, Foss F, Rosen N, Fojo AT (1989) Modulation of the expression of a multidrug resistance gene (MDR-1/P-glycoprotein) by differentiating agents. J Biol Chem 264:18031–18040

    CAS  PubMed  Google Scholar 

  • Mitsunaga Y, Takanaga H, Matsuo H, Naito M, Tsuruo T, Ohtani H, Sawada Y (2000) Effect of bioflavonoids on vincristine transport across blood–brain barrier. Eur J Pharmacol 395:193–201

    Article  CAS  PubMed  Google Scholar 

  • Perloff MD, Von Mohke LL, Greenblatt DJ (2001) The Saint John’s Wort drug interaction: an in vitro analysis of P-glycoprotein (MDR-1) induction due to chronic exposure. FASEB J 15:A548

    Google Scholar 

  • Phang JM, Poore CM, Lopaczynska J, Yeh GC (1993) Flavonol-stimulated efflux of 7,12-dimethylbenz(a)anthracene in multidrug-resistant breast cancer cells. Cancer Res 53:5977–5981

    CAS  PubMed  Google Scholar 

  • Sababi M, Borga O, Hultkvist-Bengtsson U (2001) The role of P-glycoprotein in limiting intestinal regional absorption of digoxin in rats. Eur J Pharm Sci 14:21–27

    Article  CAS  PubMed  Google Scholar 

  • Salphati L, Benet LZ (1998) Modulation of P-glycoprotein expression by cytochrome P450 3A inducers in male and female rat livers. Biochem Pharmacol 55:387–395

    Article  CAS  PubMed  Google Scholar 

  • Sandstrom R, Lennernas H (1999) Repeated oral rifampicin decreases the jejunal permeability of R/S-verapamil in rats. Drug Metab Dispos 27:951–955

    CAS  PubMed  Google Scholar 

  • Santoni-Rugiu E, Silverman JA (1997) Functional characterization of the rat mdr1b encoded P-glycoprotein: not all inducing agents are substrates. Carcinogenesis 18:2255–2263

    Article  CAS  PubMed  Google Scholar 

  • Scambia G, Ranelletti FO, Panici PB, Devincenzo R, Bonanno G, Ferrandina G, Piantelli M, Bussa S, Rumi C, Cianfriglia M, Mancuso S (1994) Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell-line-P-glycoprotein as a possible target. Cancer Chemother Pharmacol 34:459–464

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AB, Ling V (1997) Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochem Pharmacol 53:587–596

    Article  CAS  PubMed  Google Scholar 

  • Smital T, Sauerborn R, Pivcevic B, Krca S, Kurelec B (2000) Interspecies differences in P-glycoprotein mediated activity of multixenobiotic resistance mechanism in several marine and freshwater invertebrates. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 126c:175–186

    Article  CAS  Google Scholar 

  • Soldner A, Christians U, Susanto M, Wacher VJ, Silverman JA, Benet LZ (1999) Grapefruit juice activates P-glycoprotein-mediated drug transport. Pharm Res 16:478–485

    Article  CAS  PubMed  Google Scholar 

  • Starck JM, Karasov WH, Afik D (2000) Intestinal nutrient uptake measurements and tissue damage: validating the everted sleeves method. Physiol Biochem Zool 73:454–460

    Article  CAS  PubMed  Google Scholar 

  • Stephens RH, O’Neill CA, Warhurst A, Carlson GL, Rowland M, Warhurst G (2001) Kinetic profiling of P-glycoprotein-mediated drug efflux in rat and human intestinal epithelia. J Pharmacol Exp Ther 296:584–591

    CAS  PubMed  Google Scholar 

  • Van Straalen NM (1994) Biodiversity of ecotoxicological responses in animals. Neth J Zool 44:112–129

    Google Scholar 

  • Versantvoort CHM, Schuurhuis GJ, Pinedo HM, Eekman CA, Kuiper CM (1993) Genistein modulates the decreased drug accumulation in non-P-glycoprotein mediated multidrug resistant tumour cells. Br J Cancer 68:939–946

    CAS  PubMed  Google Scholar 

  • Walker CH (1980). Species variations in some hepatic microsomal enzymes that metabolize xenobiotics. In: Bridges JW, Chasseaud LF (eds) Progress in drug metabolism. Wiley, New York, pp 113–164

    Google Scholar 

Download references

Acknowledgements

We would like to thank B. Darken for extensive help in the lab. Support for this research came from USDA (Hatch) WISO4322, NSF IBN-9723793 and IBN-0216709 to W.H.K. A.K.G was supported by an NSF pre-doctoral fellowship and a UW-Madison graduate fellowship. All research conformed to UW-Madison IACUC protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Karasov.

Additional information

Communicated by I.D. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, A.K., Barnes, D.M. & Karasov, W.H. A new method to measure intestinal activity of P-glycoprotein in avian and mammalian species. J Comp Physiol B 175, 57–66 (2005). https://doi.org/10.1007/s00360-004-0462-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-004-0462-0

Keywords

Navigation