Skip to main content
Log in

The scotopic and photopic visual sensitivity in the nocturnal tree frog Agalychnis callidryas

  • Short Communication
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The red-eyed tree frog (Agalychnis callidryas) is endemic to the rainforests of Central America. During the night, it hunts for insects in the treetops whereas at daytime, the frogs rest under leaves. In the present study we determined the relative visual sensitivity spectrum of this nocturnal frog species by ERG recordings in both the dark- and light-adapted state. In both the scotopic- and photopic-sensitivity curve, we found only minor individual variations among the tested individuals. The sensitivity maximum of the scotopic curve was determined at 500 nm, which matches the absorption properties of the RH1-visual pigment expressed in the red rods of frogs. The sensitivity maximum of the photopic curve was found at 545 nm which is close to the absorption maximum of the LWS pigment type expressed in most cones of the frog retina. The threshold curves determined by ERG recordings here reveal no unusual features in the sensitivity spectrum of the red-eyed tree frog that could be interpreted as adaptations for its strictly nocturnal life style.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bowmaker JK (2008) Evolution of vertebrate visual pigments. Vis Res 48:2022–2041

    Article  CAS  PubMed  Google Scholar 

  • Denton EJ, Wyllie JH (1955) Study of the photosensitive pigments in the pink and green rods of the frog. J Physiol 127:81–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fleishman LJ, Bowman M, Saunders D, Miller WE, Rury MJ, Loew ER (1997) The visual ecology of Puerto Rican anoline lizards: habitat light and spectral sensitivity. J Comp Physiol A 181:446–460

    Article  Google Scholar 

  • Frost DR (2011) Amphibian species of the world: an online reference. Version 5.5 (31 Jan 2011). American Museum of Natural History, New York, USA. http://research.amnh.org/vz/herpetology/amphibia/. Accessed 12 June 2014

  • Gomez D, Richardson C, Lengagne T, Derex M, Plenet S, Joly P, Léna J-P, Théry M (2010) Support for a role of colour vision in mate choice in the nocturnal European treefrog (Hyla arborea). Behaviour 147:1753–1768

    Article  Google Scholar 

  • Govardovskii VI, Zueva LV (1974) Spectral sensitivity of the frog eye in the ultraviolet and visible region. Vis Res 14:1317–1321

    Article  CAS  PubMed  Google Scholar 

  • Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528

    Article  CAS  PubMed  Google Scholar 

  • Hisatomi O, Kayada S, Taniguchi Y, Kobayashi Y, Satoh T, Tokunaga F (1998) Primary structure and characterization of a bullfrog visual pigment contained in small single cones. Comp Biochem Physiol B: Biochem Mol Biol 119:585–591

    Article  CAS  Google Scholar 

  • Jacobs GH (1992) Ultraviolet vision in vertebrates. Am Zool 32:544–554

    Google Scholar 

  • Jacobs GH, Neitz J, Deegan JF II (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353:655–656

    Article  CAS  PubMed  Google Scholar 

  • Kennedy D (1957) A comparative study on spectral sensitivity in tadpoles and adult frogs. J Cell Physiol 50:155–165

    Article  CAS  PubMed  Google Scholar 

  • Kennedy D, Milkman RD (1956) Selective light absorption by the lenses of lower vertebrates, and its influence on spectral sensitivity. Biol Bull Mar Biol Lab Woods Hole 111:375–386

    Article  CAS  Google Scholar 

  • Kicliter E, Kay CJ, Chino YM (1981) Spectral opponency of on-type ganglion cells and the blue preference of Rana pipiens. Brain Res 210:103–113

    Article  CAS  PubMed  Google Scholar 

  • King RB, Douglass JK, Phillips JB, Baube CL (1993) Scotopic spectral sensitivity of the optomotor response in the green treefrog Hyla cinerea. J Exp Zool 267:40–46

    Article  CAS  PubMed  Google Scholar 

  • Lee JC (2000) A field guide to the amphibians and reptiles of the Maya world. Cornell University Press, Ithaca

    Google Scholar 

  • Liebman PA, Entine G (1968) Visual pigments of frog and tadpole (Rana pipiens). Vision Res 8:761–775

    Article  CAS  PubMed  Google Scholar 

  • Loew ER, Govardovskii VI, Röhlich P, Szél A (1996) Microspectrophotometric and immunocytochemical identification of ultraviolet photoreceptors in geckos. Vis Neurosci 13(2):247–256

    Article  CAS  PubMed  Google Scholar 

  • Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77

    Article  CAS  PubMed  Google Scholar 

  • Muntz WR (1963) The development of phototaxis in the frog (Rana temporaria). J Exp Biol 40:371–379

    CAS  PubMed  Google Scholar 

  • Röhlich P, Szél A (2000) Photoreceptor cells in the Xenopus retina. Microsc Res Tech 50:327–337

    Article  PubMed  Google Scholar 

  • Siddiqi A, Cronin TW, Loew ER, Vorobyev M, Summers K (2004) Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J Exp Biol 207:2471–2485

    Article  PubMed  Google Scholar 

  • Takahashi Y, Hisatomi O, Sakakibara S, Tokunaga F, Tsukahara Y (2001) Distribution of blue-sensitive photoreceptors in amphibian retinas. FEBS Lett 501:151–155

    Article  CAS  PubMed  Google Scholar 

  • Veilleux CC, Cummings ME (2012) Nocturnal light environments and species ecology: implications for nocturnal color vision in forests. J Exp Biol 215:4085–4096

    Article  PubMed  Google Scholar 

  • Wente WH, Phillips JB (2005) Microhabitat selection by the Pacific treefrog, Hyla regilla. Anim Behav 70:279–287

    Article  Google Scholar 

  • Winter Y, López J, Von Helversen O (2003) Ultraviolet vision in a bat. Nature 425:612–614

    Article  CAS  PubMed  Google Scholar 

  • Witkovsky P, Levine JS, Engbretson GA, Hassin G, MacNichol EF (1981) A microspectrophotometric study of normal and artificial visual pigments in the photoreceptors of Xenopus laevis. Vis Res 21:867–873

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kleinschmidt J, Sun P, Witkovsky P (1994) Identification of cone classes in Xenopus retina by immunocytochemistry and staining with lectins and vital dyes. Vis Neurosci 11:1185–1192

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Liebau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liebau, A., Eisenberg, T. & Esser, KH. The scotopic and photopic visual sensitivity in the nocturnal tree frog Agalychnis callidryas . J Comp Physiol A 201, 1035–1041 (2015). https://doi.org/10.1007/s00359-015-1028-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-1028-1

Keywords

Navigation