Skip to main content

Advertisement

Log in

Cues indicating location in pigeon navigation

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Domesticated Rock Pigeons (Columba livia f. domestica) have been selected for returning home after being displaced. They appear to use many of the physical cue sources available in the natural environment for Map-and-Compass navigation. Two compass mechanisms that have been well documented in pigeons are a time-compensated sun compass and a magnetic inclination compass. Location-finding, or map, mechanisms have been more elusive. Visual landmarks, magnetic fields, odors, gravity and now also infrasound have been proposed as sources of information on location. Even in highly familiar locations, pigeons appear to neither use nor need landmarks and can even return to the loft while wearing frosted lenses. Direct and indirect evidence indicates magnetic field information influences pigeon navigation in ways that are consistent with magnetic map components. The role of odors is unclear; it might be motivational in nature rather than navigational. The influence of gravity must be further analyzed. Experiments with infrasound have been interpreted in the sense that they provide information on the home direction, but this hypothesis is inconsistent with the Map-and-Compass Model. All these factors appear to be components of a multifactorial system, with the pigeons being opportunistic, preferring those cues that prove most suitable in their home region. This has made understanding the roles of individual cues challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong C, Wilkinson H, Meade J, Biro D, Freeman R, Guilford T (2013) Homing pigeons respond to the time-compensated solar cues even in sight of the loft. PLoS One 8:e63130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arrowsmith SJ, Hedlin MAH (2005) Observations of infrasound from surf in southern California. Geophysical Res Lett 32:L09810

    Article  Google Scholar 

  • Beason RC, Semm P (1987) Magnetic responses of the trigeminal nerve system of the bobolink, Dolichonyx oryzivorus (Aves: Icteridae). Neurosci Lett 80:229–234

    Article  CAS  PubMed  Google Scholar 

  • Beason RC, Semm P (1996) Does the avian ophthalmic nerve carry magnetic navigational information? J Exp Biol 199:1241–1244

    PubMed  Google Scholar 

  • Beason RC, Wiltschko R, Wiltschko W (1997) Pigeon homing: effects of magnetic pulses on initial orientation. Auk 114:405–415

    Article  Google Scholar 

  • Bedard AJ Jr, Georges TM (2000) Atmospheric infrasound. Phys Today 3:32–37

    Article  Google Scholar 

  • Benhamou S (2003) Bicoordinate navigation based on non-orthogonal gradient fields. J Theor Biol 224:235–239

    Article  Google Scholar 

  • Benvenuti S, Fiaschi (1983) Pigeon homing: combined effect of olfactory deprivation and visual impairment. Comp Biochem Physiol 76A:719–7251

    Article  Google Scholar 

  • Benvenuti S, Wallraff HG (1985) Pigeon navigation: site simulation by means of atmospheric odours. J Comp Physiol A 156:737–746

    Article  Google Scholar 

  • Biro D, Freeman R, Meade J, Roberts SJ, Guilford T (2007) Pigeons combine compass and landmark guidance in familiar route navigation. Proc Natl Acad Sci USA 104:7471–7476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blaser N, Guskov SI, Meskenaile V, Kanevskyi VA, Lipp HP (2013) Altered orientation and flight path of pigeons reared on gravity anomalies: a GPS-tracking study. PLoS One 8:e77102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blaser N, Guskov SI, Entin VA, Wolfer DP, Kanevskyi VA, Lipp HP (2014) Gravity anomalies without geomagnetic disturbances interfere with pigeon homing—a GPS tracking study. J Exp Biol 217:4057–4067

    Article  PubMed  Google Scholar 

  • Chelazzi C, Pardi L (1972) Experiments on the homing behavior of caged pigeons. Monit Zool. Ital (NS) 6:11–16

    Google Scholar 

  • Dennis TE, Rayner MJ, Walker MM (2007) Evidence that pigeons orient to geomagnetic intensity during homing. Proc R Soc B 274:1153–1158

    Article  PubMed Central  PubMed  Google Scholar 

  • Deutschlander ME, Beason RC (2014) Avian navigation and geographic positioning. J Field Ornithol 85:111–133

    Article  Google Scholar 

  • Deutschlander M, Phillips JB, Munro U (2012) Age-dependent orientation of magnetically-simulated geographic displacement in migratory Australian Silvereyes (Zosterops l. lateralis). Wilson J Ornithol 124:457–477

    Article  Google Scholar 

  • Dornfeld K (1991) Pigeon homing in relation to geomagnetic gravitational, topographical, and meteorological conditions. Behav Ecol Sociobiol 28:107–1123

    Google Scholar 

  • Falkenberg G, Fleissner G, Schuchardt K, Kuehbacher M, Thalau P, Mouritsen H, Heyers D, Wellenreuther G, Fleissner G (2010) Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be common features of birds. PLoS One 5:e9231

    Article  PubMed Central  PubMed  Google Scholar 

  • Fitzke FW, Hayes BP, Hodos W, Holden AL, Low CJ (1985) Refractive sectors in the visual field of the pigeon eye. J Physiol 369:17–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fleissner G, Stahl B, Thalau P, Falkenberg G, Fleissner G (2007) A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften 94:631–642

    Article  CAS  PubMed  Google Scholar 

  • Gagliardo A, Ioalè P, Fillannino C, Wikelski M (2011) Homing pigeons only navigate in air with intact environmental odours: a test of the olfactoy activation hypothesis with GPS data loggers. PLoS ONE 6:e22385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffin DR (1952) 1952. Bird navigation. Biol Rev Cambridge Phil Soc 27:359–400

    Article  Google Scholar 

  • Griffin DR, Hopkins CR (1976) Sounds audible to migrating birds. Anim Behav 22:672–678

    Article  Google Scholar 

  • Guilford T, Biro D (2014) Route following and the pigeon’s familiar area map. J Exp Biol 217:169–179

    Article  PubMed  Google Scholar 

  • Hagstrum JT (2000) Infrasound and the avian navigational map. J Exp Biol 203:1103–1111

    CAS  PubMed  Google Scholar 

  • Hagstrum JT (2013) Atmospheric propagation modeling indicates homing pigeons use loft-specific infrasonic ‘map’ cues. J Exp Biol 216:687–699

    Article  PubMed  Google Scholar 

  • Hagstrum JT, Manley GA (2015) Releases of surgically deafened homing pigeons indicate that aural cues play a significant role in their navigational system. J Comp Physiol A. doi:10.1007/s00359-015-1026-3

    Google Scholar 

  • Henshaw I, Fransson T, Jakobsson Kuklberg (2010) Geomagnetic field affects spring migratory direction in a long distance migrant. Behav Ecol Sociobiol 64:1317–1323

    Article  Google Scholar 

  • Heyers D, Zaka M, Hoffmeister M, Wild JM, Mouritsen H (2010) Magnetic field changes activate the trigeminal brain stem complex in a migratory bird. Proc Natl Acad Sci USA 107:9394–9399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hodos W, Erichson JT (1990) Lower-field myopia in birds: an adaptation that keeps the ground in focus. Vision Res 30:653–657

    Article  CAS  PubMed  Google Scholar 

  • Holland RA (2003) The role of visual landmarks in the avian familiar area map. J Exp Biol 206:1773–1778

    Article  PubMed  Google Scholar 

  • Holland RA (2014) True navigation in birds: from quantum physics to global migration. J Zool 293:1–15

    Article  Google Scholar 

  • Holland RA, Helm B (2013) A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds. J R Soc Interface 10:20121047

    Article  PubMed Central  PubMed  Google Scholar 

  • Jorge PE, Marques AE, Phillips JB (2009) Activational rather than navigational effects of odors of homing of young pigeons. Curr Biol 19:650–654

    Article  CAS  PubMed  Google Scholar 

  • Jorge PE, Marques PAM, Phillips JB (2010) Activational effects of odours on avian navigation. J R Soc B 277:45–49

    Article  Google Scholar 

  • Jorge PE, Phillips JB, Gonçalves A, Marques PAM, Nĕmec P (2014) Odours stimulate neuronal activity in the dorsolateral area of the hippocampal formation during path integration. Proc R Soc B 281:20140025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keeton WT (1973) Release-site bias as a possible guide to the “map”component in pigeons homing. J Comp Physiol 86:1–16

    Article  Google Scholar 

  • Keeton WT (1974) The orientational and navigational basis of homing in birds. Adv Stud Behav 8:47–132

    Article  Google Scholar 

  • Keeton WT, Brown AI (1976) Homing behavior of pigeons not disturbed by application of an olfactory stimulus. J Comp Physiol A 105:252–266

    Article  Google Scholar 

  • Keeton WT, Larkin TS, Windsor DM (1974) Normal fluctuations in the Earth’s magnetic field influence pigeon orientation. J Comp Physiol 95:95–103

    Article  Google Scholar 

  • Keeton WT, Kreithen ML, Hermayer KL (1977) Orientation of pigeons deprived of olfaction by nasal tubes. J Comp Physiol A 114:289–299

    Article  Google Scholar 

  • Kiepenheuer J (1982) The effect of magnetic anomalies on the homing behavior of pigeons. In: Wallraff HG (ed) Papi F. Avian navigation, Springer, pp 120–128

    Google Scholar 

  • Kowalski U (1994) Das Richtungsverhalten verfrachteter Brietauben (Columba livia) im Orientierungskäfig. J Ornithol 135:17–35

    Article  Google Scholar 

  • Kramer G (1953) Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet? J Ornithol 94:201–219

    Article  Google Scholar 

  • Kramer G (1957) Experiments in bird orientation and their interpretation. Ibis 99:196–227

    Article  Google Scholar 

  • Kramer G (1959) Recent experiments in bird orientation. Ibis 101:399–416

    Article  Google Scholar 

  • Kreithen ML, Eisner T (1978) Ultraviolet light detection by the homing pigeon. Nature 272:347–348

    Article  CAS  PubMed  Google Scholar 

  • Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon: a behavioral audiogram. J Comp Physiol A 129:1–4

    Article  Google Scholar 

  • Lednor AJ, Walcott C (1984) The orientation of pigeons at gravity anomalies. J Exp Biol 111:259–263

    Google Scholar 

  • Lefeld N, Heyers D, Schneider NL, Engels S, Elbers D, Mouritsen H (2014) Magnetic field-driven induction of ZENK in the trigeminal system of pigeons (Columba livia). J R Soc Interface 11:2014077

    Google Scholar 

  • Martin GR (2014) The subtlety of simple eyes: the tuning of visual fields to perceptual challenges in birds. Phil Trans R Soc B 369:20130040

    Article  PubMed Central  PubMed  Google Scholar 

  • Mazzotto M, Nacci L, Gagliardo A (1999) Homeward orientation of pigeons confined in a circular arena. Behav Processes 46:217–225

    Article  CAS  PubMed  Google Scholar 

  • Mora CV, Davison M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511

    Article  CAS  PubMed  Google Scholar 

  • Mukhin A, Chernetsov N, KishkinevV DD (2008) Acoustic information as a distant cue for habitat recognition by nocturnally migrating passerines. Behav Ecol 19:716–723

    Article  Google Scholar 

  • Papi F (1986) Pigeon navigation: solved problems and open questions. Monit Zool Itali (NS) 20:471–517

    Google Scholar 

  • Papi F (2001) Animal navigation at the end of the century: a retrospect and a look forward. Ital J Zool 68:171–180

    Article  Google Scholar 

  • Papi F, Fiore L, Fiaschi V, Benvenuto S (1972) Olfaction and homing in pigeons. Monit Zool Ital (NS) 6:85–95

    Google Scholar 

  • Papi F, Keeton WT, Brown AI, Benvenuti S (1978a) Do American and Italian pigeons rely on different homing mechanisms? J Comp Physiol A 128:303–317

    Article  Google Scholar 

  • Papi F, Ioalé P, Fiaschi V, Benvenuti S, Baldaccini NE (1978b) Pigeon homing: cues detected during the outward journey influence initial orientation. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration navigation and homing. Springer, Berlin, pp 63–77

    Google Scholar 

  • Phillips JB, Jorge PE (2014) Olfactory navigation: failure to attempt replication of critical experiments keep controversy alive. Reply to Wallraff. Anim Behav 90:e7–e9

    Article  Google Scholar 

  • Quine DB, Kreithen ML (1981) Frequency shift discrimination: can homing pigeons locate infrasounds by Doppler shifts? J Comp Physiol A 141:153–155

    Article  Google Scholar 

  • Schermuly L, Klinke R (1990) Infrasound sensitive neurones in the pigeon cochlear ganglion. J Comp Physiol A 166:355–363

    Article  CAS  PubMed  Google Scholar 

  • Schiffner I, Wiltschko R (2011) Temporal fluctuations of the geomagnetic field affect pigeons’ entire homing flight. J Comp Physiol A 197:765–772

    Article  Google Scholar 

  • Schiffner I, Fuhrmann P, Wiltschko R (2011) Tracking pigeons in a magnetic anomaly and in magnetically ‘quiet’ terrain. Naturwissenschaften 97:575–581

    Article  Google Scholar 

  • Schlichte HJ (1973) Untersuchungen über die Bedeutung optischer Parameter für das Heimkehrverhalten der Brieftauben. Z Tierpsychol 32:257–280

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Koenig K, Walcott C (1978) Tracks of pigeons homing with frosted lenses. Anim Behav 26:480–486

    Article  Google Scholar 

  • Semm P, Beason RC (1990) Responses to small magnetic variations by the trigeminal system of the Bobolink. Brain Res Bull 25:735–740

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Xiao B, Lin W, Zhang S, Zhu R, Pan Y (2006) Testing the presence of magnetite in the upper-beak skin of homing pigeons. Biometals 20:197–203

    Article  PubMed  Google Scholar 

  • Treiber CD, Salzer MC, Riegler J, Edelman N, Breuss M, Pichler P, Cadjou H, Saunders M, Lythgoe M, Shaw J, Keays DA (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484:367–370

    CAS  PubMed  Google Scholar 

  • Walcott C (1978) Anomalies in the Earth’s magnetic field increase the scatter in pigeons’ vanishing bearings. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Berlin, pp 143–151

    Chapter  Google Scholar 

  • Walcott C (1992) Pigeons at magnetic anomalies: the effect of loft location. J Exp Biol 170:127–141

    Google Scholar 

  • Walcott C (2005) Multi-modal orientation cues in homing pigeons. Integr Comp Biol 45:574–581

    Article  PubMed  Google Scholar 

  • Walcott C, Gould JL, Kirschvink JL (1979) Pigeons have magnets. Science 205:1027–1029

    Article  CAS  PubMed  Google Scholar 

  • Wallraff HG (2004) Avian olfactory navigation: its empirical foundation and conceptual state. Anim Behav 67:189–204

    Article  Google Scholar 

  • Wallraff HG (2005a) Avian navigation: pigeon homing as a paradigm. Springer-Verlag, Heidelberg

    Google Scholar 

  • Wallraff HG (2005b) Beyond familiar landmarks and integrated routes: goal-oriented navigation by birds. Conn Sci 17:91–106

    Article  Google Scholar 

  • Wallraff HG (2014) Do olfactory stimuli provide positional information for home-oriented avian navigation? Anim Behav 90:e1–e6

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (2007) Magnetoreception in birds: two receptors for two different tasks. J Ornithol 148(Suppl 1):S61–S76

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (2009) Avian navigation. Auk 126:717–743

    Google Scholar 

  • Wiltschko R, Wiltschko W (2013) The magnetite-based receptors in the beak of birds and their role in avian navigation. J Comp Physiol A 199:89–98

    Article  CAS  Google Scholar 

  • Wiltschko R, Wiltschko W (2014) Sensing magnetic directions in birds: radical pair processes involving cryptochrome. Biosensors 4:221–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiltschko R, Wiltschko W (2015) Avian navigation: a combination of innate and learned mechanisms. Adv Stud Behav 47:229–310

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R, Foa A, Benvenuti S (1986) Orientation behaviour of pigeons deprived of olfactory information during the outward journey and at the release site. Monit Zool Ital (NS) 20:183–193

    Google Scholar 

  • Wiltschko W, Wiltschko R, Walcott C (1987a) Pigeon homing: different effects of olfactory deprivation in different countries. Behav Ecol Sociobiol 21:333–342

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R, Grüter M (1987b) Pigeon homing: early experience determines what factors are used for navigation. Naturwissenschaften 74:196–198

    Article  Google Scholar 

  • Wiltschko R, Stapput K, Siegmund B (2005) Navigational strategies at familiar sites. Behav Ecol Sociobiol 59:303–312

    Article  Google Scholar 

  • Wiltschko R, Schiffner I, Wiltschko W (2009a) A strong magnetic anomaly affects pigeon navigation. J Exp Biol 212:2983–2990

    Article  PubMed  Google Scholar 

  • Wiltschko W, Munro U, Ford H, Wiltschko R (2009b) Avian orientation: the pulse effect is mediated by the magnetite receptors in the upper beak. Proc R Soc B 276:2227–2232

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Mark E. Deutschlander, Bethany Thurber-Duggar, and Günther K.H. Zupanc provided many helpful comments on the manuscript. We are grateful for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wiltschko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beason, R.C., Wiltschko, W. Cues indicating location in pigeon navigation. J Comp Physiol A 201, 961–967 (2015). https://doi.org/10.1007/s00359-015-1027-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-1027-2

Keywords

Navigation