Skip to main content
Log in

Multisensory integration of colors and scents: insights from bees and flowers

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Karl von Frisch’s studies of bees’ color vision and chemical senses opened a window into the perceptual world of a species other than our own. A century of subsequent research on bees’ visual and olfactory systems has developed along two productive but independent trajectories, leaving the questions of how and why bees use these two senses in concert largely unexplored. Given current interest in multimodal communication and recently discovered interplay between olfaction and vision in humans and Drosophila, understanding multisensory integration in bees is an opportunity to advance knowledge across fields. Using a classic ethological framework, we formulate proximate and ultimate perspectives on bees’ use of multisensory stimuli. We discuss interactions between scent and color in the context of bee cognition and perception, focusing on mechanistic and functional approaches, and we highlight opportunities to further explore the development and evolution of multisensory integration. We argue that although the visual and olfactory worlds of bees are perhaps the best-studied of any non-human species, research focusing on the interactions between these two sensory modalities is vitally needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AL:

Antennal lobe

KC:

Kenyon cell

MB:

Mushroom body

PER:

Proboscis extension response

References

  • Alais D, Newell FN, Mamassian P (2010) Multisensory processing in review: from physiology to behaviour. Seeing Perceiving 23:3–38

    PubMed  Google Scholar 

  • Balkenius A, Dacke M (2010) Flight behaviour of the hawkmoth Manduca sexta towards unimodal and multimodal targets. J Exp Biol 213:3741–3747. doi:10.1242/jeb.043760

    PubMed  Google Scholar 

  • Balkenius A, Hansson B (2012) Discrimination training with multimodal stimuli changes activity in the mushroom body of the hawkmoth Manduca sexta. PLoS One 7:e32133. doi:10.1371/journal.pone.0032133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balkenius A, Kelber A (2006) Colour preferences influences odour learning in the hawkmoth, Macroglossum stellatarum. Naturwissenschaften 93:255–258. doi:10.1007/s00114-006-0099-9

    CAS  PubMed  Google Scholar 

  • Balkenius A, Rosén W, Kelber A (2006) The relative importance of olfaction and vision in a diurnal and a nocturnal hawkmoth. J Comp Physiol A 192:431–437. doi:10.1007/s00359-005-0081-6

    Google Scholar 

  • Balkenius A, Kelber A, Balkenius C (2008) How do hawkmoths learn multimodal stimuli? A comparison of three models. Adapt Behav 16:349–360. doi:10.1177/1059712308092955

    Google Scholar 

  • Balkenius A, Bisch-Knaden S, Hansson B, Bisch-Knade S (2009) Interaction of visual and odour cues in the mushroom body of the hawkmoth Manduca sexta. J Exp Biol 212:535–541. doi:10.1242/jeb.021220

    PubMed  Google Scholar 

  • Biesmeijer JC, Giurfa M, Koedam D et al (2005) Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers. Naturwissenschaften 92:444–450. doi:10.1007/s00114-005-0017-6

    CAS  PubMed  Google Scholar 

  • Bremner AJ, Lewkowicz DJ, Spence C (2012) The multisensory approach to development. In: Bremner AJ, Lewkowicz DJ, Spence C (eds) Multisensory development. Oxford University Press, Oxford, pp 1–28

    Google Scholar 

  • Bronstein JL, Alarcon R, Geber M (2006) The evolution of plant–insect mutualisms. New Phytol 172:412–428

    PubMed  Google Scholar 

  • Burger H, Dötterl S, Ayasse M (2010) Host-plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Funct Ecol 24:1234–1240

    Google Scholar 

  • Burger H, Ayasse M, Dötterl S et al (2013) Perception of floral volatiles involved in host-plant finding behaviour: comparison of a bee specialist and generalist. J Comp Physiol A 199:751–761. doi:10.1007/s00359-013-0835-5

    CAS  Google Scholar 

  • Burns J, Dyer AG (2008) Diversity of speed-accuracy strategies benefits social insects. Curr Biol 18:953–954

    Google Scholar 

  • Chen K, Zhou B, Chen S et al (2013) Olfaction spontaneously highlights visual saliency map. Proc R Soc B 280:20131729

    PubMed  Google Scholar 

  • Chittka L, Briscoe A (2001) Why sensory ecology needs to become more evolutionary: insect color vision as a case in point. In: Barth FG, Schmid A (eds) Ecology of sensing. Springer, Berlin, pp 19–37

    Google Scholar 

  • Chittka L, Menzel R (1992) The evolutionary adaptation of flower colours and the insect pollinators’ colour vision. J Comp Physiol A 171:171–181

    Google Scholar 

  • Chittka L, Raine NE (2006) Recognition of flowers by pollinators. Curr Opin Plant Biol 9:428–435

    PubMed  Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377. doi:10.1007/s001140050636

    CAS  Google Scholar 

  • Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:388

    CAS  PubMed  Google Scholar 

  • Chow DM, Theobald JC, Frye MA (2011) An olfactory circuit increases the fidelity of visual behavior. J Neurosci 31:15035–15047. doi:10.1523/JNEUROSCI.1736-11.2011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coleman SW (2009) Taxonomic and sensory biases in the mate-choice literature: there are far too few studies of chemical and multimodal communication. Acta Ethol 12:45–48

    Google Scholar 

  • Couvillon PA, Bitterman ME (1980) Some phenomena of associative learning in honeybees. J Comp Physiol Psychol 94:878–885. doi:10.1037/h0077808

    Google Scholar 

  • Couvillon PA, Bitterman ME (1982) Compound conditioning in honeybees. J Comp Physiol Psychol 96:192–199. doi:10.1037/h0077869

    Google Scholar 

  • Dafni A, Lehrer M, Kevan PG (1997) Spatial flower parameters and insect spatial vision. Biol Rev Camb Philos Soc 72:239–282. doi:10.1017/S0006323196005002

    Google Scholar 

  • Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302. doi:10.1146/annurev.neuro.28.061604.135651

    CAS  PubMed  Google Scholar 

  • De Araujo IE, Rolls ET, Velazco MI et al (2005) Cognitive modulation of olfactory processing. Neuron 46:671–679. doi:10.1016/j.neuron.2005.04.021

    PubMed  Google Scholar 

  • Deisig N, Lachnit H, Giurfa M (2002) The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn Mem 9:112–121. doi:10.1101/lm.41002

    PubMed Central  PubMed  Google Scholar 

  • Dobrin SE, Fahrbach SE (2012) Visual associative learning in restrained honey bees with intact antennae. PLoS One 7:e37666. doi:10.1371/journal.pone.0037666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dobson H, Bergström G (2000) The ecology and evolution of pollen odors. Plant Syst Evol 222:63–87

    CAS  Google Scholar 

  • Dötterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee–flower interactions: a review and perspectives. Can J Zool 88:668–697. doi:10.1139/Z10-031

    Google Scholar 

  • Dyer AG, Chittka L (2004a) Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. J Comp Physiol A 190:105–114. doi:10.1007/s00359-003-0475-2

    CAS  Google Scholar 

  • Dyer AG, Chittka L (2004b) Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks. J Comp Physiol A 190:759–763. doi:10.1007/s00359-004-0547-y

    Google Scholar 

  • Dyer AG, Paulk AC, Reser DH (2011) Colour processing in complex environments: insights from the visual system of bees. Proc R Soc B 278:952–959. doi:10.1098/rspb.2010.2412

    PubMed Central  PubMed  Google Scholar 

  • Ehmer B, Gronenberg W (2002) Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). J Comp Neurol 451:362–373

    PubMed  Google Scholar 

  • Erber J (1978) Response characteristics and after effects of multimodal neurons in the mushroom body area of the honey. Physiol Entomol 3:77–89

    Google Scholar 

  • Fahrbach SE (2006) Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 51:209–232

    CAS  PubMed  Google Scholar 

  • Farris SM (2013) Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain Behav Evol 82:9–18. doi:10.1159/000352057

    PubMed  Google Scholar 

  • Farris SM, Robinson GE, Fahrbach SE (2001) Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 21:6395–6404

    CAS  PubMed  Google Scholar 

  • Frye MA, Tarsitano M, Dickinson MH (2003) Odor localization requires visual feedback during free flight in Drosophila melanogaster. J Exp Biol 206:843–855. doi:10.1242/jeb.00175

    PubMed  Google Scholar 

  • Galán RF, Weidert M, Menzel R et al (2006) Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli. Neural Comput 18:10–25. doi:10.1162/089976606774841558

    PubMed  Google Scholar 

  • Gegear RJ (2005) Multicomponent floral signals elicit selective foraging in bumblebees. Naturwissenschaften 92:269–271

    CAS  PubMed  Google Scholar 

  • Gerber B, Smith BH (1998) Visual modulation of olfactory learning in honeybees. J Exp Biol 201:2213–2217

    CAS  PubMed  Google Scholar 

  • Gerber B, Tanimoto H, Heisenberg M (2004) An engram found? Evaluating the evidence from fruit flies. Curr Opin Neurobiol 14:737–744. doi:10.1016/j.conb.2004.10.014

    CAS  PubMed  Google Scholar 

  • Giurfa M (2003) Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr Opin Neurobiol 13:726–735. doi:10.1016/j.conb.2003.10.015

    CAS  PubMed  Google Scholar 

  • Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193:801–824

    Google Scholar 

  • Giurfa M, Nunez J, Backhaus W (1994) Odour and colour information in the foraging choice behaviour of the honeybee. J Comp Physiol A 175:773–779. doi:10.1007/BF00191849

    Google Scholar 

  • Giurfa M, Schubert M, Reisenman C et al (2003) The effect of cumulative experience on the use of elemental and configural visual discrimination strategies in honeybees. Behav Brain Res 145:161–169. doi:10.1016/S0166-4328(03)00104-9

    PubMed  Google Scholar 

  • Gottfried J, Dolan RJ (2003) The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception. Neuron 39:375–386

    CAS  PubMed  Google Scholar 

  • Gould JL (1993) Ethological and comparative perspectives on honey bee learning. In: Papaj DR, Lewis AC (eds) Insect learning: ecological and evolutionary perspectives. Chapman & Hall, New York, pp 18–50

    Google Scholar 

  • Goyret J, Markwell PM, Raguso RA (2007) The effect of decoupling olfactory and visual stimuli on the foraging behavior of Manduca sexta. J Exp Biol 210:1398–1405. doi:10.1242/jeb.02752

    PubMed  Google Scholar 

  • Goyret J, Kelber A, Pfaff M, Raguso RA (2009) Flexible responses to visual and olfactory stimuli by foraging Manduca sexta: larval nutrition affects adult behaviour. Proc R Soc B 276:2739–2745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gronenberg W (1999) Modality-specific segregation of input to ant mushroom bodies. Brain Behav Evol 54:85–95. doi:10.1159/000006615

    CAS  PubMed  Google Scholar 

  • Gronenberg W (2001) Subdivisions of Hymenopteran mushroom body calyces by their afferent supply. J Comp Neurol 435:474–489

    CAS  PubMed  Google Scholar 

  • Grünewald B (1999) Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera. J Comp Neurol 404:114–126. doi:10.1002/(SICI)1096-9861(19990201)404:1<114:AID-CNE9>3.0.CO;2-#

    PubMed  Google Scholar 

  • Guilford T, Dawkins M (1993) Receiver psychology and the design of animal signals. Trends Neurosci 16:430–436

    CAS  PubMed  Google Scholar 

  • Guo J, Guo A (2005) Crossmodal interactions between olfactory and visual learning in Drosophila. Science 309:307–310. doi:10.1126/science.1111280

    CAS  PubMed  Google Scholar 

  • Hebets EA (2011) Current status and future directions of research in complex signaling. Curr Zool 57:I–V

    Google Scholar 

  • Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57:197–214

    Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275. doi:10.1038/nrn1074

    CAS  PubMed  Google Scholar 

  • Hu A, Zhang W, Wang Z (2010) Functional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway. Proc Natl Acad Sci USA 107:10262–10267. doi:10.1073/pnas.0914912107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hussaini SA, Menzel R (2013) Mushroom body extrinsic neurons in the honeybee brain encode cues and contexts differently. J Neurosci 33:7154–7164. doi:10.1523/JNEUROSCI.1331-12.2013

    CAS  PubMed  Google Scholar 

  • Jadauji JB, Djordjevic J, Lundström JN, Pack CC (2012) Modulation of olfactory perception by visual cortex stimulation. J Neurosci 32:3095–3100. doi:10.1523/JNEUROSCI.6022-11.2012

    CAS  PubMed  Google Scholar 

  • Jones BM, Leonard S, Papaj DR, Gronenberg W (2013) Plasticity of the worker bumblebee brain in relation to age and rearing environment. Brain Behav Evol. doi:10.1159/000355845

    PubMed  Google Scholar 

  • Kaczorowski RL, Leonard AS, Dornhaus A, Papaj DR (2012) Floral signal complexity as a possible adaptation to environmental variability: a test using nectar-foraging bumblebees, Bombus impatiens. Anim Behav 83:905–913. doi:10.1016/j.anbehav.2012.01.007

    Google Scholar 

  • Katzenberger TD, Lunau K, Junker RR (2013) Salience of multimodal flower cues manipulates initial responses and facilitates learning performance of bumblebees. Behav Ecol Sociobiol 67:1587–1599. doi:10.1007/s00265-013-1570-1

    Google Scholar 

  • Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321(80):1200–1202. doi:10.1126/science.1160072

    CAS  PubMed  Google Scholar 

  • Kessler D, Diezel C, Clark DG et al (2013) Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecol Lett 16:299–306. doi:10.1111/ele.12038

    PubMed  Google Scholar 

  • Klahre U, Gurba A, Hermann K et al (2011) Pollinator choice in Petunia depends on two major genetic loci for floral scent production. Curr Biol 21:730–739. doi:10.1016/j.cub.2011.03.059

    CAS  PubMed  Google Scholar 

  • Kulahci IG, Dornhaus A, Papaj DR (2008) Multimodal signals enhance decision making in foraging bumble-bees. Proc Biol Sci 275:797–802. doi:10.1098/rspb.2007.1176

    PubMed Central  PubMed  Google Scholar 

  • Kunze J, Gumbert A (2001) The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behav Ecol 12:447–456

    Google Scholar 

  • Laurienti PJ, Hugenschmidt CE (2012) Multisensory processes in old age. In: Bremner AJ, Lewkowicz DJ, Spence C (eds) Multisensory development. Oxford University Press, Oxford, pp 251–272

    Google Scholar 

  • Leonard AS, Hedrick A (2010) Long-distance signals influence assessment of close range mating displays in the field cricket, Gryllus integer. Biol J Linn Soc 100:856–865

    Google Scholar 

  • Leonard AS, Dornhaus A, Papaj DR (2011a) Forget-me-not: complex floral displays, inter-signal interactions, and pollinator cognition. Curr Zool 57:215–224

    Google Scholar 

  • Leonard AS, Dornhaus A, Papaj DR (2011b) Flowers help bees cope with uncertainty: signal detection and the function of floral complexity. J Exp Biol 214:113–121. doi:10.1242/jeb.047407

    PubMed Central  PubMed  Google Scholar 

  • Leonard AS, Dornhaus A, Papaj DR (2012) Why are floral signals complex? An outline of functional hypotheses. In: Patiny S (ed) Evolution of plant–pollinator relationships. Cambridge University Press, Cambridge, pp 261–282

    Google Scholar 

  • Leonard AS, Brent J, Papaj DR, Dornhaus A (2013) Floral nectar guide patterns discourage nectar robbing by bumble bees. PLoS One 8:e55914. doi:10.1371/journal.pone.0055914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Wolf R, Ernst R, Heisenberg M (1999) Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400:753–756. doi:10.1038/23456

    CAS  PubMed  Google Scholar 

  • Liu G, Seiler H, Wen A et al (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439:551–556. doi:10.1038/nature04381

    CAS  PubMed  Google Scholar 

  • Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222:89–111. doi:10.1007/BF00984097

    Google Scholar 

  • Lynn SK, Cnaai J, Papaj DR (2005) Peak shift discrimination learning as a mechanism of signal evolution. Evolution 59:1300–1305

    PubMed  Google Scholar 

  • McFrederick QS, Fuentes JD, Roulston T et al (2009) Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia 160:411–420. doi:10.1007/s00442-009-1318-9

    PubMed  Google Scholar 

  • Menzel R (1983) Neurobiology of learning and memory: the honeybee as a model system. Naturwissenschaften 70:504–511

    CAS  PubMed  Google Scholar 

  • Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340. doi:10.1007/s003590050392

    Google Scholar 

  • Menzel R (2001) Searching for the memory trace in a mini-brain, the honeybee. Learn Mem 8:53–62

    CAS  PubMed  Google Scholar 

  • Milet-Pinheiro P, Ayasse M, Schlindwein C et al (2012) Host location by visual and olfactory floral cues in an oligolectic bee: innate and learned behavior. Behav Ecol 23:531–538. doi:10.1093/beheco/arr219

    Google Scholar 

  • Mobbs PG (1982) The brain of the honeybee Apis mellifera. The connections and spatial-organization of the mushroom bodies. Phil Trans R Soc B Biol Sci 298:309–354

    Google Scholar 

  • Morawetz L, Spaethe J (2012) Visual attention in a complex search task differs between honeybees and bumblebees. J Exp Biol 215:2515–2523. doi:10.1242/jeb.066399

    PubMed  Google Scholar 

  • Morrot G, Brochet F, Dubourdieu D (2001) The color of odors. Brain Lang 79:309–320. doi:10.1006/brln.2001.2493

    CAS  PubMed  Google Scholar 

  • Mota T, Giurfa M, Sandoz J (2011) Color modulates olfactory learning in honeybees by an occasion-setting mechanism. Learn Mem 18:144–155. doi:10.1101/lm.2073511

    PubMed  Google Scholar 

  • Rodacy PJ, Bender S, Bromenshenk J, Henderson C, Bender G (2002) Training and deployment of honeybees to detect explosives and other agents of harm. In: Broach JT, Harmon RS, Dobeck GJ (eds) Proceedings of SPIE, Detection and remediation technologies for mines and minelike targets VII, vol 4742. Orlando, FL, USA, pp 509–519

  • Odell E, Raguso RA, Jones KN (1999) Bumblebee foraging responses to variation in floral scent and color in snapdragons. Am Midl Nat 142:257–265

    Google Scholar 

  • Ofstad TA, Zuker CS, Reiser MB (2011) Visual place learning in Drosophila melanogaster. Nature 474:204–207. doi:10.1038/nature10131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Partan SR (2013) Ten unanswered questions in multimodal communication. Behav Ecol Sociobiol 67:1523–1539. doi:10.1007/s00265-013-1565-y

    PubMed Central  PubMed  Google Scholar 

  • Partan SR, Marler P (1999) Communication goes multimodal. Science 283:1272–1273

    CAS  PubMed  Google Scholar 

  • Pelletier L, McNeil JN (2003) The effect of food supplementation on reproductive success in bumblebee field colonies. Oikos 103:688–694

    Google Scholar 

  • Raguso RA (2004) Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. Curr Opin Plant Biol 7:434–440

    PubMed  Google Scholar 

  • Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569. doi:10.1146/annurev.ecolsys.38.091206.095601

    Google Scholar 

  • Raguso RA, Willis MA (2002) Synergy between visual and olfactory cues in nectar feeding by naive hawkmoths, Manduca sexta. Anim Behav 64:685–695. doi:10.1006/anbe.2002.4010

    Google Scholar 

  • Raguso RA, Willis MA (2005) Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, Manduca sexta. Anim Behav 69:407–418. doi:10.1016/j.anbehav.2004.04.015

    Google Scholar 

  • Reinhard J, Srinivasan MV, Guez D, Zhang SW (2004) Floral scents induce recall of navigational and visual memories in honeybees. J Exp Biol 207:4371–4381. doi:10.1242/jeb.01306

    PubMed  Google Scholar 

  • Reinhard J, Srinivasan MV, Zhang S (2006) Complex memories in honeybees: can there be more than two? J Comp Physiol A 192:409–416. doi:10.1007/s00359-005-0079-0

    Google Scholar 

  • Riveros AJ, Gronenberg W (2010) Brain allometry and neural plasticity in the bumblebee Bombus occidentalis. Brain Behav Evol 75:138–148. doi:10.1159/000306506

    PubMed Central  PubMed  Google Scholar 

  • Riveros AJ, Gronenberg W (2012) Decision-making and associative color learning in harnessed bumblebees (Bombus impatiens). Anim Cogn 15:1183–1193. doi:10.1007/s10071-012-0542-6

    PubMed  Google Scholar 

  • Rowe C (1999) Receiver psychology and the evolution of multicomponent signals. Anim Behav 58:921–931

    PubMed  Google Scholar 

  • Rowland BA, Quessy S, Stanford TR, Stein BE (2007) Multisensory integration shortens physiological response latencies. J Neurosci 27:5879–5884. doi:10.1523/JNEUROSCI.4986-06.2007

    CAS  PubMed  Google Scholar 

  • Rybak J, Menzel R (1993) Anatomy of the mushroom bodies in the honey bee brain: the neuronal connections of the alpha-lobe. J Comp Neurol 334:444–465. doi:10.1002/cne.903340309

    CAS  PubMed  Google Scholar 

  • Schaefer HM, Ruxton GD (2010) Deception in plants: mimicry or perceptual exploitation? Trends Ecol Evol 24:676–684. doi:10.1016/j.tree.2009.06.006

    Google Scholar 

  • Schaefer HM, Schaefer V, Levey DJ (2004) How plant–animal interactions signal new insights in communication. Trends Ecol Evol 19:577–584

    Google Scholar 

  • Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656. doi:10.1111/j.1461-0248.2010.01451.x

    PubMed  Google Scholar 

  • Schiestl FP, Johnson SD, Raguso RA (2010) Floral evolution as a figment of the imagination of pollinators. Trends Ecol Evol 25:382–383

    PubMed  Google Scholar 

  • Sheehan H, Hermann K, Kuhlemeier C (2012) Color and scent: how single genes influence pollinator attraction. Cold Spring Harb Symp Quant Biol 77:117–133. doi:10.1101/sqb.2013.77.014712

    CAS  PubMed  Google Scholar 

  • Shettleworth SJ (1998) Cognition, evolution and behavior. Oxford University Press, New York

    Google Scholar 

  • Small DM (2004) Crossmodal integration—insights from the chemical senses. Trends Neurosci 27:118–120. doi:10.1016/j.tins.2003.12.010

    Google Scholar 

  • Smith CL, Evans CS (2013) A new heuristic for capturing the complexity of multimodal signals. Behav Ecol Sociobiol 67:1389–1398. doi:10.1007/s00265-013-1490-0

    Google Scholar 

  • Spaethe J, Chittka L (2003) Interindividual variation of eye optics and single object resolution in bumblebees. J Exp Biol 206:3447–3453. doi:10.1242/jeb.00570

    PubMed  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci USA 98:3898–3903. doi:10.1073/pnas.071053098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2006) Do honeybees detect colour targets using serial or parallel visual search? J Exp Biol 209:987–993. doi:10.1242/jeb.02124

    PubMed  Google Scholar 

  • Spaethe J, Brockmann A, Halbig C, Tautz J (2007) Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften 94:733–739. doi:10.1007/s00114-007-0251-1

    CAS  PubMed  Google Scholar 

  • Spitzer B, Zvi MM Ben, Ovadis M et al (2007) Reverse genetics of floral scent: application of tobacco rattle virus-based gene silencing in Petunia. Plant Physiol 145:1241–1250. doi:10.1104/pp.107.105916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stein BE (2012) The new handbook of multisensory processes. MIT Press, Cambridge, Mass

    Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. The MIT Press, Cambridge, London

    Google Scholar 

  • Stewart FJ, Baker DA, Webb B (2010) A model of visual-olfactory integration for odour localisation in free-flying fruit flies. J Exp Biol 213:1886–1900. doi:10.1242/jeb.026526

    PubMed  Google Scholar 

  • Strausfeld NJ (2002) Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. J Comp Neurol 450:4–33. doi:10.1002/cne.10285

    PubMed  Google Scholar 

  • Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance, and historical significance. Belknap Press, Harvard University Press, Cambridge, Mass

    Google Scholar 

  • Strausfeld NJ, Hansen L, Li Y et al (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37. doi:10.1101/lm.5.1.11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265–291. doi:10.1002/cne.21948

    PubMed  Google Scholar 

  • Streinzer M, Paulus HF, Spaethe J (2009) Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. J Exp Biol 212:1365–1370. doi:10.1242/jeb.027482

    PubMed  Google Scholar 

  • Talsma D, Senkowski D, Soto-Faraco S, Woldorff MG (2010) The multifaceted interplay between attention and multisensory integration. Trends Cogn Sci 14:400–410. doi:10.1016/j.tics.2010.06.008

    PubMed Central  PubMed  Google Scholar 

  • Tang S, Guo A (2001) Choice behavior of Drosophila facing contradictory visual cues. Science 294:1543–1547. doi:10.1126/science.1058237

    CAS  PubMed  Google Scholar 

  • Tinbergen N (1963) On aims and methods of ethology. Z Tierpsychol 20:410–433

    Google Scholar 

  • Uy JAC, Safran RJ (2013) Variation in the temporal and spatial use of signals and its implications for multimodal communication. Behav Ecol Sociobiol 67:1499–1511. doi:10.1007/s00265-013-1492-y

    Google Scholar 

  • Van der Burg E, Olivers CNL, Bronkhorst AW, Theeuwes J (2008) Pip and pop: nonspatial auditory signals improve spatial visual search. J Exp Psychol Hum Percept Perform 34:1053–1065. doi:10.1037/0096-1523.34.5.1053

    PubMed  Google Scholar 

  • Van der Burg E, Olivers CNL, Bronkhorst AW, Theeuwes J (2009) Poke and pop: tactile-visual synchrony increases visual saliency. Neurosci Lett 450:60–64. doi:10.1016/j.neulet.2008.11.002

    CAS  PubMed  Google Scholar 

  • Van Swinderen B, Greenspan RJ (2003) Salience modulates 20–30 Hz brain activity in Drosophila. Nat Neurosci 6:579–586. doi:10.1038/nn1054

    CAS  PubMed  Google Scholar 

  • von Frisch K (1956) Bees: their vision, chemical senses and language. Cornell University Press, Ithaca, London

    Google Scholar 

  • von Frisch K (1966) The dancing bees/Aus dem Leben der Bienen, 7th edn. Harcourt, Brace & World, Inc., New York

    Google Scholar 

  • Wolf R, Wittig T, Liu L et al (1998) Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. Learn Mem 5:166–178. doi:10.1101/lm.5.1.166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yarali A, Hendel T, Gerber B (2006) Olfactory learning and behaviour are “insulated” against visual processing in larval Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:1133–1145. doi:10.1007/s00359-006-0140-7

    PubMed  Google Scholar 

  • Young JM, Wessnitzer J, Armstrong JD, Webb B (2011) Elemental and non-elemental olfactory learning in Drosophila. Neurobiol Learn Mem 96:339–352. doi:10.1016/j.nlm.2011.06.009

    CAS  PubMed  Google Scholar 

  • Yu D, Ponomarev A, Davis RL (2004) Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment. Neuron 42:437–449. doi:10.1016/S0896-6273(04)00217-X

    CAS  PubMed  Google Scholar 

  • Zhou W, Jiang Y, He S, Chen D (2010) Olfaction modulates visual perception in binocular rivalry. Curr Biol 20:1356–1358. doi:10.1016/j.cub.2010.05.059

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the editors for the invitation to contribute to this special issue, and J. Francis and F. Muth for comments on the manuscript. A.S.L. thanks D.R. Papaj and A. Dornhaus and their labs for discussions that fostered a multisensory worldview. This work was made possible by grants from the National Institute of General Medical Sciences (INBRE P20GM103440 and COBRE 5P20GM103650) to PM and by NSF Grant #IOS-1257762 to ASL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne S. Leonard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonard, A.S., Masek, P. Multisensory integration of colors and scents: insights from bees and flowers. J Comp Physiol A 200, 463–474 (2014). https://doi.org/10.1007/s00359-014-0904-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0904-4

Keywords

Navigation