Skip to main content
Log in

Ground reaction forces in vertically ascending beetles and corresponding activity of the claw retractor muscle on smooth and rough substrates

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We measured ground reaction forces in fore–aft and normal directions of single hind and front legs in vertically ascending Sagra femorata beetles (Coleoptera, Chrysomelidae) on a smooth and a rough substrate. Simultaneously, we performed electromyographic recordings (EMGs) of the hind leg claw retractor muscle that partly controls the attachment structures. On both substrates, hind legs produced upward- as well as downward-directed forces during one stance phase. Forces were equivalent in both directions. Front legs generated only upward-directed forces. The main function of hind legs in ascending beetles in the second half of the stance thus probably prevented the animals from tilting away from the substrate. The EMGs of hind legs showed an early spike during stance with large amplitude. It was mostly followed by few additional spikes with large amplitude and in some cases of spikes with smaller amplitude distributed throughout the stance phase. We found significantly more spikes on the rough substrate than on the smooth one. This is probably due to the more important role of pretarsal claws than tarsal hairy attachment pads on the rough substrate or to the reduced adhesive forces on the rough substrate that have to be compensated by additional muscle activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arnold JW (1974) Adaptive features on the tarsi of cockroaches (Insecta: Dictyoptera). Int J Insect Morphol Embryol 3:317–334

    Article  Google Scholar 

  • Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci 100:10603–10606

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42:1081–1090

    Article  PubMed  Google Scholar 

  • Autumn K, Hsieh ST, Dudek DM, Chen J, Chitaphan C, Full RJ (2006) Dynamics of geckos running vertically. J Exp Biol 209:260–272

    Article  PubMed  CAS  Google Scholar 

  • Bauchhenß E (1979) Die Pulvillen von Calliphora erythrocephala (Diptera, Brachycera) als Adhäsionsorgane. Zoomorphologie 93:99–123

    Article  Google Scholar 

  • Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39:177–207

    Article  Google Scholar 

  • Brunn DE, Dean J (1994) Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor middle leg position. J Neurophysiol 72:1208–1219

    PubMed  CAS  Google Scholar 

  • Bullock JMR, Federle W (2009) Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: effective elastic modulus and attachment performance. J Exp Biol 212:1876–1888

    Article  PubMed  Google Scholar 

  • Bullock JMR, Federle W (2011) The effect of surface roughness on claw and adhesive hair performance in the dock beetle Gastrophysa viridula. Insect Sci 18:298–304

    Article  Google Scholar 

  • Bullock JMR, Drechseler P, Federle W (2008) Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J Exp Biol 211:3333–3343

    Article  PubMed  Google Scholar 

  • Bußhardt P, Gorb SN (2013) Walking on smooth and rough ground: activity and timing of the claw retractor muscle in the beetle Pachnoda marginata peregrina (Coleoptera, Scarabaeidae). J Exp Biol 216:319–328

    Article  PubMed  Google Scholar 

  • Bußhardt P, Gorb SN, Wolf H (2011) Activity of the claw retractor muscle in stick insects in wall and ceiling situations. J Exp Biol 214:1676–1684

    Article  PubMed  Google Scholar 

  • Bußhardt P, Wolf H, Gorb SN (2012) Adhesive and frictional properties of tarsal attachment pads in stick insects (Phasmatodea) with smooth and nubby euplantulae. Zoology 115:135–141

    Article  PubMed  Google Scholar 

  • Chapman RF (1998) Legs and locomotion. In: Simpson SJ, Douglas AE (eds) The insects: structure and function, 5th edn. Cambridge University Press, Cambridge, New York, Melbourne, pp 151–152

    Chapter  Google Scholar 

  • Chung JY, Chaudhury MK (2005) Roles of discontinuities in bio-inspired adhesive pads. J R Soc Interface 2:55–61

    Article  PubMed Central  PubMed  Google Scholar 

  • Clemente CJ, Federle W (2008) Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches. Proc R Soc Lond B 275:1329–1336

    Article  Google Scholar 

  • Creton C, Gorb SN (2007) Sticky feet: from animals to materials. MRS Bull 32:466–468

    Article  Google Scholar 

  • Cruse H (1976) The function of the legs in the free walking stick insect, Carausius morosus. J Comp Physiol A 112:235–262

    Article  Google Scholar 

  • Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods? Trends Neurosci 13:15–21

    Article  PubMed  CAS  Google Scholar 

  • Dai Z, Gorb SN, Schwarz U (2002) Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 205:2479–2488

    PubMed  Google Scholar 

  • Dean J, Wendler G (1983) Stick insect locomotion on a walking wheel: interleg coordination of leg position. J Exp Biol 103:75–94

    Google Scholar 

  • Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal attachment on performance. J Comp Physiol A 192:1213–1222

    Article  Google Scholar 

  • Duch C, Pflüger HJ (1995) Motor patterns for horizontal and upside down walking and vertical climbing in the locust. J Exp Biol 198:1963–1976

    PubMed  Google Scholar 

  • Dürr V, Schmitz J, Cruse H (2004) Behaviour-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Struct Dev 33:237–250

    Article  PubMed  Google Scholar 

  • Federle W (2006) Why are so many adhesive pads hairy? J Exp Biol 209:2611–2621

    Article  PubMed  Google Scholar 

  • Federle W, Brainerd EL, McMahon TA, Hölldobler B (2001) Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Nat Acad Sci USA 98:6215–6220

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Filippov A, Popov VL, Gorb SN (2011) Shear induced adhesion: contact mechanics of biological spatula-like attachment devices. J Theor Biol 276:126–131

    Article  PubMed  Google Scholar 

  • Frantsevich L, Gorb S (2004) Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): implications on the attachment mechanism. Arthropod Struct Dev 33:77–89

    Article  PubMed  Google Scholar 

  • Glassmaker NJ, Jagota A, Hui C-Y, Kim J (2004) Design of biomimetic fibrillar interfaces: 1. Making contact. J R Soc Interface 1:23–33

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Godden DH (1972) The motor innervation of the leg musculature and motor output during thanatosis in the stick insect Carausius morosus Br. J Comp Physiol A 80:201–225

    Article  Google Scholar 

  • Goel SC (1972) Notes on structure of unguitractor plate in Heteroptera (Hemiptera). J Entomol 46:167–173

    Google Scholar 

  • Goldman DI, Chen TS, Dudek DM, Full RJ (2006) Dynamics of rapid vertical climbing in cockroaches reveals a template. J Exp Biol 209:2990–3000

    Article  PubMed  Google Scholar 

  • Gorb SN (1996) Design of insect unguitractor apparatus. J Morphol 230:219–230

    Article  Google Scholar 

  • Gorb SN (1998) The design of the fly adhesive pad: distal tenant setae are adapted to the delivery of an adhesive secretion. Proc R Soc Lond B 265:747–752

    Article  Google Scholar 

  • Gorb SN (2001) Attachment devices of insect cuticle. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gorb SN (2011) Biological fibrillar adhesives: functional principles and biomimetic applications. In: Da Silva LFM, Öchsner A, Adams RD (eds) Handbook of adhesion technology. Springer, Berlin, Heidelberg, pp 1409–1436

    Chapter  Google Scholar 

  • Homann H (1957) Haften Spinnen an einer Wasserhaut? Naturwissenschaften 44:318–319

    Article  Google Scholar 

  • Hui C-Y, Glassmaker NJ, Tang T, Jagota A (2004) Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J R Soc Interface 1:35–48

    Article  PubMed Central  PubMed  Google Scholar 

  • Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42:1140–1145

    Article  PubMed  Google Scholar 

  • Kendall MD (1970) The anatomy of the tarsi of Schistocerca gregaria Forskal. Cell Tissue Res 109:112–137

    CAS  Google Scholar 

  • Langer MG, Ruppersberg JP, Gorb S (2004) Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc R Soc Lond B 271:2209–2215

    Article  Google Scholar 

  • Larsen GS, Frazier SF, Fish SE, Zill SN (1995) Effects of load inversion in cockroach walking. J Comp Physiol A 176:229–238

    Article  PubMed  CAS  Google Scholar 

  • Laurent G, Hustert R (1988) Motor neuronal receptive fields delimit patterns of motor activity during locomotion of the locust. J Neurosci 8:4349–4366

    PubMed  CAS  Google Scholar 

  • Niederegger S, Gorb SN (2003) Tarsal movements in flies during leg attachment and detachment on a smooth substrate. J Insect Physiol 49:611–620

    Article  PubMed  CAS  Google Scholar 

  • Peisker H, Michels J, Gorb SN (2013) Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat commun 4:1661

    Article  PubMed  CAS  Google Scholar 

  • Perez Goodwyn P, Peressadko A, Schwarz H, Kastner V, Gorb S (2006) Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera). J Comp Physiol A 192:1233–1243

    Article  Google Scholar 

  • Persson BNJ (2003) On the mechanism of adhesion in biological systems. J Chem Phys 118:7614–7621

    Article  CAS  Google Scholar 

  • Persson BNJ, Gorb SN (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119:11437–11444

    Article  CAS  Google Scholar 

  • Prüm B, Seidl R, Bohn HF, Speck T (2012a) Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata). Beilstein J Nanotechnol 3:57–64

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prüm B, Seidl R, Bohn HF, Speck T (2012b) Plant surfaces with cuticular folds are slippery for beetles. J R Soc Interface 9:127–135

    Article  PubMed Central  PubMed  Google Scholar 

  • Radnikow G, Bässler U (1991) Function of a muscle whose apodeme travels through a joint moved by other muscles: why the retractor unguis muscle in stick insects is tripartite and has no antagonist. J Exp Biol 157:87–99

    Google Scholar 

  • Rosenbaum P, Wosnitza A, Büschges A, Gruhn M (2010) Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus. J Neurophysiol 104:1681–1695

    Article  PubMed  Google Scholar 

  • Roth LM, Willis ER (1952) Tarsal structure and climbing ability of cockroaches. J Exp Zool 119:483–517

    Article  Google Scholar 

  • Russell AP (2002) Integrative functional morphology of the gekkotan adhesive system (Reptilia: Gekkota). Integr Comp Biol 42:1154–1163

    Article  PubMed  Google Scholar 

  • Seifert P, Heinzeller T (1989) Mechanical, sensory and glandular structures in the tarsal unguitractor apparatus of Chironomus riparius (Diptera, Chironomidae). Zoomorphology 109:71–78

    Article  Google Scholar 

  • Snodgrass RE (1956) Anatomy of the honey bee. Comstock Publishing Associates, New York

    Google Scholar 

  • Stein W, Büschges A, Bässler U (2006) Intersegmental transfer of sensory signals in the stick insect leg muscle control system. J Neurobiol 66:1253–1269

    Article  PubMed  Google Scholar 

  • Stork NE (1980) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J Exp Biol 88:91–107

    Google Scholar 

  • Varenberg M, Pugno NM, Gorb SN (2010) Spatulate structures in biological fibrillar adhesion. Soft Matter 6:3269–3272

    Article  CAS  Google Scholar 

  • Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765–776

    Article  PubMed  CAS  Google Scholar 

  • Voigt D, Schweikart A, Fery A, Gorb SN (2012) Leaf beetle attachment on wrinkles: isotropic friction on anisotropic surfaces. J Exp Biol 215:1975–1982

    Article  PubMed  Google Scholar 

  • Watson JT, Ritzmann RE, Pollack AJ (2002) Control of climbing behavior in the cockroach, Blaberus discoidalis. II. Motor activities associated with joint movement. J Comp Physiol A 188:55–69

    Article  Google Scholar 

  • Wolff JO, Gorb SN (2012) Comparative morphology of pretarsal scopulae in eleven spider families. Arthropod Struct Dev 41:419–433

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2013) Radial arrangement of Janus-like setae permits friction control on spiders. Sci Rep 3:1–7

    Article  CAS  Google Scholar 

  • Zill SN, Keller BR, Duke ER (2009) Sensory signals of unloading in one leg following stance onset in another leg: transfer of load and emergent coordination in cockroach walking. J Neurophysiol 101:2297–2304

    Article  PubMed  Google Scholar 

  • Zill SN, Keller BR, Chaudhry S, Duke ER, Neff D, Quinn R, Flannigan C (2010) Detecting substrate engagement: responses of tarsal campaniform sensilla in cockroaches. J Comp Physiol A 196:407–420

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Federal Ministry of Education and Research, Germany (Project BMBF Biona 01RB0802A) to S.N.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Bußhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bußhardt, P., Gorb, S.N. Ground reaction forces in vertically ascending beetles and corresponding activity of the claw retractor muscle on smooth and rough substrates. J Comp Physiol A 200, 385–398 (2014). https://doi.org/10.1007/s00359-014-0896-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0896-0

Keywords

Navigation