Skip to main content
Log in

Blue colour preference in honeybees distracts visual attention for learning closed shapes

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Spatial vision is an important cue for how honeybees (Apis mellifera) find flowers, and previous work has suggested that spatial learning in free-flying bees is exclusively mediated by achromatic input to the green photoreceptor channel. However, some data suggested that bees may be able to use alternative channels for shape processing, and recent work shows conditioning type and training length can significantly influence bee learning and cue use. We thus tested the honeybees’ ability to discriminate between two closed shapes considering either absolute or differential conditioning, and using eight stimuli differing in their spectral characteristics. Consistent with previous work, green contrast enabled reliable shape learning for both types of conditioning, but surprisingly, we found that bees trained with appetitive-aversive differential conditioning could additionally use colour and/or UV contrast to enable shape discrimination. Interestingly, we found that a high blue contrast initially interferes with bee shape learning, probably due to the bees innate preference for blue colours, but with increasing experience bees can learn a variety of spectral and/or colour cues to facilitate spatial learning. Thus, the relationship between bee pollinators and the spatial and spectral cues that they use to find rewarding flowers appears to be a more rich visual environment than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avargues-Weber A, de Brito Sanchez MG, Giurfa M, Dyer AG (2010a) Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS ONE 5:e15370

    Article  PubMed  Google Scholar 

  • Avargues-Weber A, Portelli G, Benard J, Dyer AG, Giurfa M (2010b) Configural processing enables discrimination and categorization of face-like stimuli in honeybees. J Exp Biol 213:593–601

    Article  PubMed  CAS  Google Scholar 

  • Avargues-Weber A, Deisig N, Giurfa M (2011) Visual cognition in social insects. Ann Rev Entomol 56:423–443

    Article  CAS  Google Scholar 

  • Backhaus W (1991) Color opponent coding in the visual system of the honeybee. Vis Res 31:1381–1397

    Article  PubMed  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effect models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4

  • Baumgärtner H (1928) Der Formensinn und die Sehschärfe der Bienen. Z Vergl Physiol 7:56–143

    Article  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  PubMed  CAS  Google Scholar 

  • Burns JG, Dyer AG (2008) Diversity of speed-accuracy strategies benefits social insects. Curr Biol 18:R953–R954

    Article  PubMed  CAS  Google Scholar 

  • Campan R, Lehrer M (2002) Discrimination of closed shapes by two species of bee, Apis mellifera and Megachile rotundata. J Exp Biol 205:559–572

    PubMed  Google Scholar 

  • Chittka L (1992) The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a gerneralized representation of colour opponency. J Comp Physiol A 170:533–543

    Google Scholar 

  • Daumer K (1956) Reizmetrische Untersuchungen des Farbensehens der Bienen. Z Vergl Physiol 38:413–478

    Google Scholar 

  • Dyer AG (2012) The mysterious cognitive abilities of bees: why models of visual processing need to consider experience and individual differences in animal performance. J Exp Biol 215:387–395

    Article  PubMed  Google Scholar 

  • Dyer AG, Chittka L (2004a) Biological significance of distinguishing between similar colours in spectrally variable illumination: bumbleebees (Bombus terrestris) as a case study. J Comp Physiol A 190:105–114

    Article  CAS  Google Scholar 

  • Dyer AG, Chittka L (2004b) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91:224–227

    Article  PubMed  CAS  Google Scholar 

  • Dyer AG, Griffiths DW (2012) Seeing near and seeing far; behavioural evidence for dual mechanisms of pattern vision in the honeybee (Apis mellifera). J Exp Biol 215:397–404

    Article  PubMed  Google Scholar 

  • Dyer AG, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191:547–557

    Article  Google Scholar 

  • Dyer AG, Vuong QC (2008) Insect brains use image interpolation mechanisms to recognise rotated objects. PLoS ONE 3:e4086

    Article  PubMed  Google Scholar 

  • Dyer AG, Neumeyer C, Chittka L (2005) Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. J Exp Biol 208:4709–4714

    Article  PubMed  Google Scholar 

  • Dyer AG, Whitney H, Arnold S, Glover B, Chittka L (2007) Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod-Plant Interact 1:45–55

    Article  Google Scholar 

  • Dyer AG, Rosa MGP, Reser DH (2008a) Honeybees can recognise images of complex natural scenes for use as potential landmarks. J Exp Biol 211:1180–1186

    Article  PubMed  Google Scholar 

  • Dyer AG, Spaethe J, Prack S (2008b) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194:617–627

    Article  Google Scholar 

  • Dyer AG, Paulk AC, Reser DH (2011) Colour processing in complex environments: insights from the visual system of bees. Proc R Soc B 278:952–959

    Article  PubMed  Google Scholar 

  • Fox J (2003) Effect displays in R for generalised linear models. J Stat Soft 8:1–27

    Google Scholar 

  • Fox J, Weisberg S (2011) An R Companion to applied regression. Sage, Thousand Oaks

  • Giger AD, Srinivasan MV (1996) Pattern recognition in hoenybees: chromatic properties of orientation analysis. J Comp Physiol A 178:763–769

    Article  Google Scholar 

  • Giurfa M (2004) Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 91:228–231

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M, Backhaus W, Menzel R (1995a) Color and angular orientation in the discrimination of bilateral symmetric patterns in the honeybee. Naturwissenschaften 82:198–201

    Article  CAS  Google Scholar 

  • Giurfa M, Núñez J, Chittka L, Menzel R (1995b) Colour preference of flower-naive honeybees. J Comp Physiol A 177:247–259

    Article  Google Scholar 

  • Giurfa M, Eichmann B, Menzel R (1996a) Symmetry perception in an insect. Nature 382:458–461

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M, Vorobyev M, Kevan P, Menzel R (1996b) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709

    Article  Google Scholar 

  • Giurfa M, Vorobyev M, Brandt R, Posner B, Menzel R (1997) Discrimination of coloured stimuli by honeybees: alternative use of achromatic and chromatic signals. J Comp Physiol A 180:235–243

    Article  Google Scholar 

  • Giurfa M, Hammer M, Stach S, Stollhoff N, Müller-Deisig N, Mizyrycki C (1999) Pattern learning by honeybees: conditioning procedure and recognition strategy. Anim Behav 57:315–324

    Article  PubMed  Google Scholar 

  • Gould JL, Gould CG (1988) The honey bee. Scientific American Library, New York

    Google Scholar 

  • Goulson D, Cruise JL, Sparrow KR, Harris AJ, Park KJ, Tinsley MC, Gilburn AS (2007) Choosing rewarding flowers; perceptual limitations and innate preference influence decision making in bumblebees and honeybees. Behav Ecol Sociobiol 61:1523–1529

    Article  Google Scholar 

  • Gumbert A (2000) Color choice by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43

    Article  Google Scholar 

  • Hempel de Ibarra N, Giurfa M (2003) Discrimination of closed coloured shapes by honeybees requires only contrast to the long wavelength receptor type. Anim Behav 66:903–910

    Article  Google Scholar 

  • Hempel de Ibarra N, Giurfa M, Vorobyev M (2001) Detection of coloured patterns by honeybees through chromatic and achromatic cues. J Comp Physiol A 187:215–224

    Article  PubMed  CAS  Google Scholar 

  • Hertz M (1929) Die Organisation des optischen Feldes bei der Biene. I. Z Vergl Physiol 8:693–748

    Article  Google Scholar 

  • Hill PSM, Wells PH, Wells H (1997) Spontaneous flower constancy and learning in honey bees as a function of colour. Anim Behav 54:615–627

    Article  PubMed  Google Scholar 

  • Horridge A (2009) Generalization in visual recognition by the honeybee (Apis mellifera). A review and explanation. J Insect Physiol 55:499–511

    Article  PubMed  CAS  Google Scholar 

  • Kien J, Menzel R (1977) Chromatic properties of interneurons in the optic lobes of the bee II. Narrow band and colour opponent neurons. J Comp Physiol A 113:35–53

    Article  Google Scholar 

  • Kulahci IG, Dornhaus A, Papaj DR (2008) Multimodal signals enhance decision making in foraging bumble-bees. Proc R Soc B 275:797–802

    Article  PubMed  Google Scholar 

  • Lehrer M (1999) Dorsoventral asymmetry of colour discrimination in bees. J Comp Physiol A 184:195–206

    Article  Google Scholar 

  • Lehrer M, Campan R (2005) Generalization of convex shapes by bees: what are shapes made of? J Exp Biol 208:3233–3247

    Article  PubMed  Google Scholar 

  • Lunau K (1990) Colour saturation triggers innate reactions to flower signals: flower dummy experiments with bumblebees. J Comp Physiol A 166:827–834

    Article  Google Scholar 

  • Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumble bees and their implications for colour perception. J Comp Physiol A 178:477–489

    Article  Google Scholar 

  • Mazochin-Porshnyakov GA (1969) Die Fähigkeit der Bienen, visuelle Reize zu generalisieren. Z Vergl Physiol 65:15–28

    Article  Google Scholar 

  • Menzel R (1967) Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z vergl Physiol 56:22–62

    Article  Google Scholar 

  • Menzel R, Giurfa M (2006) Dimensions of cognition in an insect, the honeybee. Behav Cogn Neurosci Rev 5:24–40

    Article  PubMed  Google Scholar 

  • Møller AP (1995) Bumblebee preference for symmetrical flowers. P Natl Acad Sci USA 92:2288–2292

    Article  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria. http://www.R-project.org/

  • Reinhard J, Srinivasan MV, Guez D, Zhang SW (2004) Floral scents induce recall of navigational and visual memories in honeybees. J Exp Biol 207:4371–4381

    Article  PubMed  Google Scholar 

  • Reser DH, Wijesekara Witharanage R, Rosa MGP, Dyer AG (2012) Honeybees (Apis mellifera) learn color discriminations via differential conditioning independent of long wavelength (green) photoreceptor modulation. PLoS ONE 7:e48577

    Article  PubMed  CAS  Google Scholar 

  • Ronacher B (1992) Influence of unrewarded stimuli on the classification of visual patterns by honey bees. Ethology 92:205–216

    Article  Google Scholar 

  • Ronacher B, Duft U (1996) An image-matching mechanism describes a generalization task in honeybees. J Comp Physiol A 178:803–812

    Article  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. P Natl Acad Sci USA 98:3898–3903

    Article  CAS  Google Scholar 

  • Srinivasan MV, Lehrer M (1988) Spatial acuity of honeybee vision and its spectral properties. J Comp Physiol A 162:159–172

    Article  Google Scholar 

  • Stach S, Giurfa M (2005) The influence of training length on generalization of visual feature assemblies in honeybees. Behav Brain Res 161:8–17

    Article  PubMed  Google Scholar 

  • Stach S, Benard J, Giurfa M (2004) Local-feature assembling in visual pattern recognition and generalization in honeybees. Nature 429:758–761

    Article  PubMed  CAS  Google Scholar 

  • Streinzer M, Paulus HF, Spaethe J (2009) Floral colour signal increases short-range detectability of a sexually deceptive orchid to its bee pollinator. J Exp Biol 212:1365–1370

    Article  PubMed  Google Scholar 

  • von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Z Jb Abt Allg Zool Physiol 35:1–188

    Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Harvard

    Google Scholar 

  • von Helversen O (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol A 80:439–472

    Article  Google Scholar 

  • Wignall AE, Heiling AM, Cheng K, Herberstein ME (2006) Flower symmetry preferences in honeybees and their crab spider predators. Ethology 112:510–518

    Article  Google Scholar 

  • Wu W, Moreno A, Tangen J, Reinhard J (2013) Honeybees can discriminate between Monet and Picasso paintings. J Comp Physiol A 199:45–55

    Article  Google Scholar 

  • Yang EC, Lin HC, Hung YS (2004) Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol 50:913–925

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Srinivasan MV, Collett T (1995) Convergent processing in honeybee vision: multiple channels for the recognition of shape. P Natl Acad Sci USA 92:3029–3031

    Article  CAS  Google Scholar 

  • Zhang S, Srinivasan MV, Zhu H, Wong J (2004) Grouping of visual objects by honeybees. J Exp Biol 207:3289–3298

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Martin Streinzer for performing the colour measurements and the two anonymous reviewers for their constructive comments of the manuscript. L.M. was recipient of a DOC-fFORTE fellowship of the Austrian Academy of Science at the Department of Integrative Zoology, University of Vienna. A.G.D. was supported by Australian Research Council DP0878968/DP0987989/DP130100015 and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linde Morawetz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morawetz, L., Svoboda, A., Spaethe, J. et al. Blue colour preference in honeybees distracts visual attention for learning closed shapes. J Comp Physiol A 199, 817–827 (2013). https://doi.org/10.1007/s00359-013-0843-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0843-5

Keywords

Navigation