Skip to main content
Log in

The role of the coreceptor Orco in insect olfactory transduction

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Insects sense odorants with specialized odorant receptors (ORs). Each antennal olfactory receptor neuron expresses one OR with an odorant binding site together with a conserved coreceptor called Orco which does not bind odorants. Orco is necessary for localization of ORs to dendritic membranes and, thus, is essential for odorant detection. It forms a spontaneously opening cation channel, activated via phosphorylation by protein kinase C. Thereafter, Orco is also activated via cyclic adenosine monophosphate (cAMP). Orco forms homo—as well as heteromers with ORs with unknown stoichiometry. Contradictory publications suggest different mechanisms of olfactory transduction. On the one hand, evidence accumulates for the employment of more than one G protein-coupled olfactory transduction cascade in different insects. On the other hand, results from other studies suggest that the OR–Orco complex functions as an odorant-gated cation channel mediating ionotropic signal transduction. This review analyzes conflicting hypotheses concerning the role of Orco in insect olfactory transduction. In conclusion, in situ studies in hawkmoths falsify the hypothesis that Orco underlies odorant-induced ionotropic signal transduction in all insect species. Instead, Orco forms a metabotropically gated, slow cation channel which controls odorant response threshold and kinetics of the sensory neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

GR:

Gustatory receptor

I i :

Ionotropic current

I m :

Metabotropic current

I t :

Transduction current

IP3 :

Inositol 1,4,5-trisphosphate

IR:

Ionotropic receptor

OR:

Odorant receptor

Orco:

Olfactory receptor coreceptor

ORN:

Olfactory receptor neuron

PKC:

Protein kinase C

PLCβ:

Phospholipase Cβ

SNMP:

Sensory neuron membrane protein

TM:

transmembrane domain

References

  • Abdel-Latief M (2007) A family of chemoreceptors in Tribolium castaneum (Tenebrionidae: Coleoptera). PLoS One 2(12):e1319

    PubMed  Google Scholar 

  • Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R (2011) Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69(1):44–60

    PubMed  CAS  Google Scholar 

  • Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemo-, thermo- and hygroreceptors and its functional significance. Int Rev Cytol 67:69–139

    Google Scholar 

  • Atema J (1995) Chemical signals in the marine environment: dispersal, detection, and temporal signal analysis. Proc Natl Acad Sci USA 92(1):62–66

    PubMed  CAS  Google Scholar 

  • Baker TC, Hansson BS, Lofstedt C, Lofqvist J (1988) Adaptation of antennal neurons in moths is associated with cessation of pheromone-mediated upwind flight. Proc Natl Acad Sci USA 85(24):9826–9830

    PubMed  CAS  Google Scholar 

  • Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4(2):e20

    PubMed  Google Scholar 

  • Benton R, Vannice KS, Vosshall LB (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450(7167):289–293

    PubMed  CAS  Google Scholar 

  • Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136(1):149–162

    PubMed  CAS  Google Scholar 

  • Boekhoff I, Strotmann J, Raming K, Tareilus E, Breer H (1990) Odorant-sensitive phospholipase C in insect antennae. Cell Signal 2(1):49–56

    PubMed  CAS  Google Scholar 

  • Boekhoff I, Seifert E, Göggerle S, Lindemann M, Krüger BW, Breer H (1993) Pheromone-induced second-messenger signaling in insect antennae. Insect Biochem Mol Biol 23(7):757–762

    CAS  Google Scholar 

  • Bohbot JD, Dickens JC (2012) Odorant receptor modulation: ternary paradigm for mode of action of insect repellents. Neuropharmacology 62(5–6):2086–2095

    PubMed  CAS  Google Scholar 

  • Breer H, Boekhoff I, Tareilus E (1990) Rapid kinetics of second messenger formation in olfactory transduction. Nature 345(6270):65–68

    PubMed  CAS  Google Scholar 

  • Chatterjee A, Roman G, Hardin PE (2009) Go contributes to olfactory reception in Drosophila melanogaster. BMC Physiol 9:22

    PubMed  Google Scholar 

  • Chen S, Luetje CW (2012) Identification of new agonists and antagonists of the insect odorant receptor co-receptor subunit. PLoS One 7(5):e36784

    PubMed  CAS  Google Scholar 

  • Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22(2):327–338

    PubMed  CAS  Google Scholar 

  • Corey EA, Bobkov Y, Ukhanov K, Ache BW (2013) Ionotropic crustacean olfactory receptors. PLoS One 8(4):e60551

    PubMed  CAS  Google Scholar 

  • Couto A, Alenius M, Dickson BJ (2005) Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15(17):1535–1547

    PubMed  CAS  Google Scholar 

  • Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, Gibson TJ, Benton R (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet 6(8):e1001064

    PubMed  Google Scholar 

  • de Bruyne M, Baker TC (2008) Odor detection in insects: volatile codes. J Chem Ecol 34(7):882–897

    PubMed  CAS  Google Scholar 

  • de Bruyne M, Clyne PJ, Carlson JR (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 19(11):4520–4532

    PubMed  Google Scholar 

  • de Bruyne M, Foster K, Carlson JR (2001) Odor coding in the Drosophila antenna. Neuron 30(2):537–552

    PubMed  Google Scholar 

  • Deng Y, Zhang W, Farhat K, Oberland S, Gisselmann G, Neuhaus EM (2011) The stimulatory Gαs protein is involved in olfactory signal transduction in Drosophila. PLoS One 6(4):e18605

    PubMed  CAS  Google Scholar 

  • Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA, Carlson JR (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37(5):827–841

    PubMed  CAS  Google Scholar 

  • Dolzer J, Fischer K, Stengl M (2003) Adaptation in pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta. J Exp Biol 206(Pt 9):1575–1588

    PubMed  Google Scholar 

  • Elmore T, Ignell R, Carlson JR, Smith DP (2003) Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J Neurosci 23(30):9906–9912

    PubMed  CAS  Google Scholar 

  • Flecke C, Stengl M (2009) Octopamine and tyramine modulate pheromone-sensitive olfactory sensilla of the hawkmoth Manduca sexta in a time-dependent manner. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(6):529–545

    PubMed  CAS  Google Scholar 

  • Flecke C, Dolzer J, Krannich S, Stengl M (2006) Perfusion with cGMP analogue adapts the action potential response of pheromone-sensitive sensilla trichoidea of the hawkmoth Manduca sexta in a daytime-dependent manner. J Exp Biol 209(Pt 19):3898–3912

    PubMed  CAS  Google Scholar 

  • Flecke C, Nolte A, Stengl M (2010) Perfusion with cAMP analogue affects pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta in a time-dependent manner. J Exp Biol 213(Pt 5):842–852

    PubMed  CAS  Google Scholar 

  • Forstner M, Gohl T, Gondesen I, Raming K, Breer H, Krieger J (2008) Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem Senses 33(3):291–299

    PubMed  CAS  Google Scholar 

  • German PF, van der Poel S, Carraher C, Kralicek AV, Newcomb RD (2013) Insights into subunit interactions within the insect olfactory receptor complex using FRET. Insect Biochem Mol Biol 43(2):138–145

    PubMed  CAS  Google Scholar 

  • Getahun MN, Wicher D, Hansson BS, Olsson SB (2012) Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity. Front Cell Neurosci 6:54

    PubMed  Google Scholar 

  • Getahun MN, Olsson SB, Lavista-Llanos S, Hansson BS, Wicher D (2013) Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors. PLoS One 8(3):e58889

    PubMed  CAS  Google Scholar 

  • Goldman AL, van der Goes van Naters W, Lessing D, Warr CG, Carlson JR (2005) Coexpression of two functional odor receptors in one neuron. Neuron 45(5):661–666

    PubMed  CAS  Google Scholar 

  • Grosse-Wilde E, Svatoš A, Krieger J (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses 31(6):547–555

    PubMed  CAS  Google Scholar 

  • Grosse-Wilde E, Stieber R, Forstner M, Krieger J, Wicher D, Hansson BS (2010) Sex-specific odorant receptors of the tobacco hornworm Manduca sexta. Front Cell Neurosci 4:22

    PubMed  Google Scholar 

  • Grosse-Wilde E, Kuebler LS, Bucks S, Vogel H, Wicher D, Hansson BS (2011) Antennal transcriptome of Manduca sexta. Proc Natl Acad Sci USA 108(18):7449–7454

    PubMed  CAS  Google Scholar 

  • Guo S, Kim J (2010) Dissecting the molecular mechanism of Drosophila odorant receptors through activity modeling and comparative analysis. Proteins 78(2):381–399

    PubMed  CAS  Google Scholar 

  • Hallem EA, Ho MG, Carlson JR (2004a) The molecular basis of odor coding in the Drosophila antenna. Cell 117(7):965–979

    PubMed  CAS  Google Scholar 

  • Hallem EA, Nicole Fox A, Zwiebel LJ, Carlson JR (2004b) Olfaction: mosquito receptor for human-sweat odorant. Nature 427(6971):212–213

    PubMed  CAS  Google Scholar 

  • Hallem EA, Dahanukar A, Carlson JR (2006) Insect odor and taste receptors. Annu Rev Entomol 51:113–135

    PubMed  CAS  Google Scholar 

  • Hardie RC, Raghu P (2001) Visual transduction in Drosophila. Nature 413(6852):186–193

    PubMed  CAS  Google Scholar 

  • Harini K, Sowdhamini R (2012) Molecular modelling of oligomeric states of DmOR83b, an olfactory receptor in D. melanogaster. Bioinform Biol Insights 6:33–47

    PubMed  CAS  Google Scholar 

  • Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ (2002) G protein-coupled receptors in Anopheles gambiae. Science 298(5591):176–178

    PubMed  CAS  Google Scholar 

  • Isono K, Morita H (2010) Molecular and cellular designs of insect taste receptor system. Front Cell Neurosci 4:20

    PubMed  Google Scholar 

  • Ito I, Ong RC, Raman B, Stopfer M (2008) Sparse odor representation and olfactory learning. Nat Neurosci 11(10):1177–1184

    PubMed  CAS  Google Scholar 

  • Jin X, Ha TS, Smith DP (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci USA 105(31):10996–11001

    PubMed  CAS  Google Scholar 

  • Jones WD, Nguyen TA, Kloss B, Lee KJ, Vosshall LB (2005) Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr Biol 15(4):R119–R121

    PubMed  CAS  Google Scholar 

  • Jones PL, Pask GM, Rinker DC, Zwiebel LJ (2011) Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci USA 108(21):8821–8825

    PubMed  CAS  Google Scholar 

  • Jones PL, Pask GM, Romaine IM, Taylor RW, Reid PR, Waterson AG, Sulikowski GA, Zwiebel LJ (2012) Allosteric antagonism of insect odorant receptor ion channels. PLoS One 7(1):e30304

    PubMed  CAS  Google Scholar 

  • Jordan MD, Anderson A, Begum D, Carraher C, Authier A, Marshall SD, Kiely A, Gatehouse LN, Greenwood DR, Christie DL, Kralicek AV, Trowell SC, Newcomb RD (2009) Odorant receptors from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. Chem Senses 34(5):383–394

    PubMed  CAS  Google Scholar 

  • Junek S, Kludt E, Wolf F, Schild D (2010) Olfactory coding with patterns of response latencies. Neuron 67(5):872–884

    PubMed  CAS  Google Scholar 

  • Justus KA, Carde RT, French AS (2005) Dynamic properties of antennal responses to pheromone in two moth species. J Neurophysiol 93(4):2233–2239

    PubMed  CAS  Google Scholar 

  • Kain P, Chakraborty TS, Sundaram S, Siddiqi O, Rodrigues V, Hasan G (2008) Reduced odor responses from antennal neurons of Gqα, phospholipase Cβ, and rdgA mutants in Drosophila support a role for a phospholipid intermediate in insect olfactory transduction. J Neurosci 28(18):4745–4755

    PubMed  CAS  Google Scholar 

  • Kaissling KE (1987) Stimulus transduction. In: Colbow K (ed) R. H. Wright lectures on insect olfaction. Simon Fraser University Press, Burnaby, BC, pp 1–190

    Google Scholar 

  • Kaissling KE, Priesner E (1970) Die Riechschwelle des Seidenspinners. Naturwissenschaften 57(1):23–28

    PubMed  CAS  Google Scholar 

  • Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insects. In: KR C, Hiromu A (eds) Insect ultrastructure vol 2. Plenum Press, New York, pp 477–516

    Google Scholar 

  • Kennedy JS, Ludlow AR, Sanders CJ (1981) Guidance of flying male moths by wind-borne sex-pheromone. Physiol Entomol 6(4):395–412

    Google Scholar 

  • Kiely A (2008) Functional and structural analyses of an olfactory receptor from Drosophila melanogaster. Dissertation, University of Auckland

  • Kiely A, Authier A, Kralicek AV, Warr CG, Newcomb RD (2007) Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J Neurosci Methods 159(2):189–194

    PubMed  CAS  Google Scholar 

  • Koehl MA (2006) The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem Senses 31(2):93–105

    PubMed  CAS  Google Scholar 

  • Krieger J, Raming K, Dewer YM, Bette S, Conzelmann S, Breer H (2002) A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur J Neurosci 16(4):619–628

    PubMed  Google Scholar 

  • Krieger J, Klink O, Mohl C, Raming K, Breer H (2003) A candidate olfactory receptor subtype highly conserved across different insect orders. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(7):519–526

    PubMed  CAS  Google Scholar 

  • Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43(5):703–714

    PubMed  CAS  Google Scholar 

  • Laue M, Maida R, Redkozubov A (1997) G-protein activation, identification and immunolocalization in pheromone-sensitive sensilla trichodea of moths. Cell Tissue Res 288(1):149–158

    PubMed  CAS  Google Scholar 

  • Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3(11):884–895

    PubMed  CAS  Google Scholar 

  • Lei H, Riffell JA, Gage SL, Hildebrand JG (2009) Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. J Biol 8(2):21

    PubMed  Google Scholar 

  • Lundin C, Kall L, Kreher SA, Kapp K, Sonnhammer EL, Carlson JR, Heijne G, Nilsson I (2007) Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett 581(29):5601–5604

    PubMed  CAS  Google Scholar 

  • Martin JP, Beyerlein A, Dacks AM, Reisenman CE, Riffell JA, Lei H, Hildebrand JG (2011) The neurobiology of insect olfaction: sensory processing in a comparative context. Prog Neurobiol 95(3):427–447

    PubMed  Google Scholar 

  • Melo AC, Rutzler M, Pitts RJ, Zwiebel LJ (2004) Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs. Chem Senses 29(5):403–410

    PubMed  CAS  Google Scholar 

  • Miller R, Tu Z (2008) Odorant receptor c-terminal motifs in divergent insect species. J Insect Sci 8:53

    Google Scholar 

  • Mitsuno H, Sakurai T, Murai M, Yasuda T, Kugimiya S, Ozawa R, Toyohara H, Takabayashi J, Miyoshi H, Nishioka T (2008) Identification of receptors of main sex-pheromone components of three Lepidopteran species. Eur J Neurosci 28(5):893–902

    PubMed  Google Scholar 

  • Montagne N, Chertemps T, Brigaud I, Francois A, Francois MC, de Fouchier A, Lucas P, Larsson MC, Jacquin-Joly E (2012) Functional characterization of a sex pheromone receptor in the pest moth Spodoptera littoralis by heterologous expression in Drosophila. Eur J Neurosci 36(5):2588–2596

    PubMed  Google Scholar 

  • Murlis J, Jones CD (1981) Fine-scale structure of odor-plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol Entomol 6(1):71–86

    Google Scholar 

  • Nadasdy Z (2010) Binding by asynchrony: the neuronal phase code. Front Neurosci 4:51

    PubMed  Google Scholar 

  • Nakagawa T, Vosshall LB (2009) Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr Opin Neurobiol 19(3):284–292

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307(5715):1638–1642

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Pellegrino M, Sato K, Vosshall LB, Touhara K (2012) Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLoS One 7(3):e32372

    PubMed  CAS  Google Scholar 

  • Neuhaus EM, Gisselmann G, Zhang W, Dooley R, Stortkuhl K, Hatt H (2005) Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat Neurosci 8(1):15–17

    PubMed  CAS  Google Scholar 

  • Nichols AS, Chen S, Luetje CW (2011) Subunit contributions to insect olfactory receptor function: channel block and odorant recognition. Chem Senses 36(9):781–790

    PubMed  CAS  Google Scholar 

  • Nolte A, Funk NW, Mukunda L, Gawalek P, Werckenthin A, Hansson BS, Wicher D, Stengl M (2013) In situ tip-recordings found no evidence for an Orco-based ionotropic mechanism of pheromone-transduction in Manduca sexta. PLoS One 8(5):e62648

    PubMed  CAS  Google Scholar 

  • Olafson PU (2013) Molecular characterization and immunolocalization of the olfactory co-receptor Orco from two blood-feeding muscid flies, the stable fly (Stomoxys calcitrans, L.) and the horn fly (Haematobia irritans irritans, L.). Insect Mol Biol 22(2):131–142

    PubMed  CAS  Google Scholar 

  • Pask GM, Jones PL, Rutzler M, Rinker DC, Zwiebel LJ (2011) Heteromeric anopheline odorant receptors exhibit distinct channel properties. PLoS One 6(12):e28774

    PubMed  CAS  Google Scholar 

  • Pask GM, Bobkov YV, Corey EA, Ache BW, Zwiebel LJ (2013) Blockade of insect odorant receptor currents by amiloride derivatives. Chem Senses 38(3):221–229

    PubMed  CAS  Google Scholar 

  • Patch HM, Velarde RA, Walden KK, Robertson HM (2009) A candidate pheromone receptor and two odorant receptors of the hawkmoth Manduca sexta. Chem Senses 34(4):305–316

    PubMed  CAS  Google Scholar 

  • Peñalva-Arana DC, Lynch M, Robertson HM (2009) The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors. BMC Evol Biol 9:79

    PubMed  Google Scholar 

  • Pitts RJ, Fox AN, Zwiebel LJ (2004) A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA 101(14):5058–5063

    PubMed  CAS  Google Scholar 

  • Robertson HM, Gadau J, Wanner KW (2010) The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis. Insect Mol Biol 19(Suppl 1):121–136

    PubMed  CAS  Google Scholar 

  • Rogers ME, Sun M, Lerner MR, Vogt RG (1997) SNMP-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J Biol Chem 272(23):14792–14799

    PubMed  CAS  Google Scholar 

  • Rogers ME, Steinbrecht RA, Vogt RG (2001a) Expression of SNMP-1 in olfactory neurons and sensilla of male and female antennae of the silkmoth Antheraea polyphemus. Cell Tissue Res 303(3):433–446

    PubMed  CAS  Google Scholar 

  • Rogers ME, Krieger J, Vogt RG (2001b) Antennal SNMPs (sensory neuron membrane proteins) of Lepidoptera define a unique family of invertebrate CD36-like proteins. J Neurobiol 49(1):47–61

    PubMed  CAS  Google Scholar 

  • Röllecke K, Werner M, Ziemba PM, Neuhaus EM, Hatt H, Gisselmann G (2013) Amiloride derivatives are effective blockers of insect odorant receptors. Chem Senses 38(3):231–236

    PubMed  Google Scholar 

  • Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci USA 101(47):16653–16658

    PubMed  CAS  Google Scholar 

  • Sargsyan V, Getahun MN, Llanos SL, Olsson SB, Hansson BS, Wicher D (2011) Phosphorylation via PKC regulates the function of the Drosophila odorant co-receptor. Front Cell Neurosci 5:5

    PubMed  Google Scholar 

  • Sato K, Pellegrino M, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452(7190):1002–1006

    PubMed  CAS  Google Scholar 

  • Sato K, Tanaka K, Touhara K (2011) Sugar-regulated cation channel formed by an insect gustatory receptor. Proc Natl Acad Sci USA 108(28):11680–11685

    PubMed  CAS  Google Scholar 

  • Schuckel J, Siwicki KK, Stengl M (2007) Putative circadian pacemaker cells in the antenna of the hawkmoth Manduca sexta. Cell Tissue Res 330(2):271–278

    PubMed  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    PubMed  CAS  Google Scholar 

  • Smadja C, Shi P, Butlin RK, Robertson HM (2009) Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Mol Biol Evol 26(9):2073–2086

    PubMed  CAS  Google Scholar 

  • Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38(8):770–780

    PubMed  CAS  Google Scholar 

  • Stengl M (1993) Intracellular-messenger-mediated cation channels in cultured olfactory receptor neurons. J Exp Biol 178:125–147

    PubMed  CAS  Google Scholar 

  • Stengl M (1994) Inositol-trisphosphate-dependent calcium currents precede cation currents in insect olfactory receptor neurons in vitro. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 174(2):187–194

    CAS  Google Scholar 

  • Stengl M (2010) Pheromone transduction in moths. Front Cell Neurosci 4:133

    PubMed  Google Scholar 

  • Stengl M, Zufall F, Hatt H, Hildebrand JG (1992) Olfactory receptor neurons from antennae of developing male Manduca sexta respond to components of the species-specific sex pheromone in vitro. J Neurosci 12(7):2523–2531

    PubMed  CAS  Google Scholar 

  • Su CY, Menuz K, Reisert J, Carlson JR (2012) Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature 492(7427):66–71

    PubMed  CAS  Google Scholar 

  • Taylor RW, Romaine IM, Liu C, Murthi P, Jones PL, Waterson AG, Sulikowski GA, Zwiebel LJ (2012) Structure-activity relationship of a broad-spectrum insect odorant receptor agonist. ACS Chem Biol 7(10):1647–1652

    PubMed  CAS  Google Scholar 

  • Tripathy SJ, Peters OJ, Staudacher EM, Kalwar FR, Hatfield MN, Daly KC (2010) Odors pulsed at wing beat frequencies are tracked by primary olfactory networks and enhance odor detection. Front Cell Neurosci 4:1

    PubMed  Google Scholar 

  • Tsitoura P, Andronopoulou E, Tsikou D, Agalou A, Papakonstantinou MP, Kotzia GA, Labropoulou V, Swevers L, Georgoussi Z, Iatrou K (2010) Expression and membrane topology of Anopheles gambiae odorant receptors in lepidopteran insect cells. PLoS One 5(11):e15428

    PubMed  CAS  Google Scholar 

  • Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198(2):203–212

    PubMed  CAS  Google Scholar 

  • Vickers NJ, Baker TC (1992) Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex-pheromone (Lepidoptera, Noctuidae). J Insect Behav 5(6):669–687

    Google Scholar 

  • Vogt RG, Miller NE, Litvack R, Fandino RA, Sparks J, Staples J, Friedman R, Dickens JC (2009) The insect SNMP gene family. Insect Biochem Mol Biol 39(7):448–456

    PubMed  CAS  Google Scholar 

  • Vosshall LB, Hansson BS (2011) A unified nomenclature system for the insect olfactory coreceptor. Chem Senses 36(6):497–498

    PubMed  Google Scholar 

  • Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96(5):725–736

    PubMed  CAS  Google Scholar 

  • Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102(2):147–159

    PubMed  CAS  Google Scholar 

  • Wang X, Zhong M, Wen J, Cai J, Jiang H, Liu Y, Aly SM, Xiong F (2012) Molecular characterization and expression pattern of an odorant receptor from the myiasis-causing blowfly, Lucilia sericata (Diptera: Calliphoridae). Parasitol Res 110(2):843–851

    PubMed  Google Scholar 

  • Wanner KW, Nichols AS, Allen JE, Bunger PL, Garczynski SF, Linn CE, Robertson HM, Luetje CW (2010) Sex pheromone receptor specificity in the European corn borer moth, Ostrinia nubilalis. PLoS One 5(1):e8685

    PubMed  Google Scholar 

  • Wegener JW, Hanke W, Breer H (1997) Second messenger-controlled membrane conductance in locust (Locusta migratoria) olfactory neurons. J Insect Physiol 43(6):595–603

    PubMed  CAS  Google Scholar 

  • Wetzel CH, Behrendt HJ, Gisselmann G, Stortkuhl KF, Hovemann B, Hatt H (2001) Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc Natl Acad Sci USA 98(16):9377–9380

    PubMed  CAS  Google Scholar 

  • Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452(7190):1007–1011

    PubMed  CAS  Google Scholar 

  • Wistrand M, Kall L, Sonnhammer EL (2006) A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Protein Sci 15(3):509–521

    PubMed  CAS  Google Scholar 

  • Xia Y, Zwiebel LJ (2006) Identification and characterization of an odorant receptor from the West Nile virus mosquito, Culex quinquefasciatus. Insect Biochem Mol Biol 36(3):169–176

    PubMed  CAS  Google Scholar 

  • Yang Y, Krieger J, Zhang L, Breer H (2012) The olfactory co-receptor Orco from the migratory locust (Locusta migratoria) and the desert locust (Schistocerca gregaria): identification and expression pattern. Int J Biol Sci 8(2):159–170

    PubMed  CAS  Google Scholar 

  • Yao CA, Carlson JR (2010) Role of G-proteins in odor-sensing and CO2-sensing neurons in Drosophila. J Neurosci 30(13):4562–4572

    PubMed  CAS  Google Scholar 

  • Zhang HJ, Anderson AR, Trowell SC, Luo AR, Xiang ZH, Xia QY (2011) Topological and functional characterization of an insect gustatory receptor. PLoS One 6(8):e24111

    PubMed  CAS  Google Scholar 

  • Zheng W, Zhu C, Peng T, Zhang H (2012) Odorant receptor co-receptor Orco is upregulated by methyl eugenol in male Bactrocera dorsalis (Diptera: Tephritidae). J Insect Physiol 58(8):1122–1127

    PubMed  CAS  Google Scholar 

  • Ziegelberger G, van den Berg MJ, Kaissling KE, Klumpp S, Schultz JE (1990) Cyclic GMP levels and guanylate cyclase activity in pheromone-sensitive antennae of the silkmoths Antheraea polyphemus and Bombyx mori. J Neurosci 10(4):1217–1225

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Stengl.

Additional information

M. Stengl and N.W. Funk contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stengl, M., Funk, N.W. The role of the coreceptor Orco in insect olfactory transduction. J Comp Physiol A 199, 897–909 (2013). https://doi.org/10.1007/s00359-013-0837-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0837-3

Keywords

Navigation