Skip to main content
Log in

Social regulation of electric signal plasticity in male Brachyhypopomus gauderio

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In animal communication, the social context that elicits particular dynamic changes in the signal can provide indirect clues to signal function. Female presence should increase the expression of male signal traits relevant for mate-choice, while male presence should promote the enhancement of traits involved in male-male competition. The electric fish Brachyhypopomus gauderio produces a biphasic electric pulse for electrolocation and communication. Pulse amplitude predicts the signaler’s body size while pulse duration predicts circulating androgen levels. Males enhance pulse amplitude and duration when the numbers of males and females increase simultaneously. Here we tested the relative effects of female presence and male presence on male signal enhancement, and whether the size of the male competitor affected this enhancement. We found that male presence drives the enhancement of both pulse amplitude and second phase duration, independently of the size of the male competitor. Female presence induces the enhancement of pulse duration, but not pulse amplitude. These data suggest that males probably attend to information about a competitor’s body size coded by pulse amplitude and attend to aggressiveness coded by a competitor’s pulse duration, both potential predictors of fight outcome. Females may be primarily concerned about information on reproductive condition coded by pulse duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotropic hormone

α-MSH:

α-melanocyte stimulating hormone

EOD:

Electric organ discharge

P2:

Second phase of the electric organ discharge

τP2 :

Time constant of second phase repolarization

References

  • Akre KL, Ryan MJ (2011) Female túngara frogs elicit more complex mating signals from males. Behav Ecol 22:846–853

    Article  Google Scholar 

  • Allee SJ, Markham MR, Stoddard PK (2009) Androgens enhance plasticity of an electric communication signal in female knifefish, Brachyhypopomus pinnicaudatus. Horm Behav 56:264–273

    Article  PubMed  CAS  Google Scholar 

  • Andersson M (1994) Sexual Selection. Princeton University Press, New Jersey

    Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, Sunderland

    Google Scholar 

  • Caputi A, Budelli R (2006) Peripheral electrosensory imaging by weakly electric fish. J Comp Physiol A 192:587–600

    Article  CAS  Google Scholar 

  • Caputi AA, Budelli R, Grant K, Bell CC (1998) The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii. J Exp Biol 201:2115–2128

    PubMed  CAS  Google Scholar 

  • Cuddy M, Aubin-Horth N, Krahe R (2012) Electrocommunication behaviour and non invasively-measured androgen changes following induced seasonal breeding in the weakly electric fish, Apteronotus leptorhynchus. Horm Behav 61(1):4–11

    Article  PubMed  CAS  Google Scholar 

  • Curtis CC, Stoddard PK (2003) Mate preference in female electric fish, Brachyhypopomus pinnicaudatus. Anim Behav 66:329–336

    Article  Google Scholar 

  • Davis EA, Hopkins CD (1988) Behavioural analysis of electric signal localization in the electric fish, Gymnotus carapo (Gymnotiformes). Anim Behav 36:1658–1671

    Article  Google Scholar 

  • Ducrest A-L, Keller L, Roulin A (2008) Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol Evol 23:502–510

    Article  PubMed  Google Scholar 

  • Dunlap KD (2002) Hormonal and body size correlates of electrocommunication behavior during dyadic interactions in a weakly electric fish, Apteronotus leptorhynchus. Horm Behav 41:187–194

    Article  PubMed  CAS  Google Scholar 

  • Fernandes CC, Smith GT, Podos J, Nogueira A, Inoue L, Akama A, Ho WW, Alves-Gomes J (2010) Hormonal and behavioral correlates of morphological variation in an Amazonian electric fish (Sternarchogiton nattereri: apteronotidae). Horm Behav 58:660–668

    Article  Google Scholar 

  • Font E, Carazo P (2010) Animals in translation: why there is meaning (but probably no message) in animal communication. Anim Behav 80:e1–e6

    Article  Google Scholar 

  • Franchina CR, Stoddard PK (1998) Plasticity of the electric organ discharge waveform of the electric fish Brachyhypopomus pinnicaudatus. I. Quantification of day-night changes. J Comp Physiol A 183:759–768

    Article  PubMed  CAS  Google Scholar 

  • Franchina CR, Salazar VL, Volmar CH, Stoddard PK (2001) Plasticity of the electric organ discharge waveform of male Brachyhypopomus pinnicaudatus II. Social effects. J Comp Physiol A 187:45–52

    Article  PubMed  CAS  Google Scholar 

  • Gavassa S, Silva AC, Stoddard PK (2011) Tight hormonal phenotypic integration ensures honesty of the electric signal of male and female Brachyhypopomus gauderio. Horm Behav 60:420–426

    Article  PubMed  CAS  Google Scholar 

  • Gavassa S, Silva AC, Gonzalez E, Stoddard PK (2012) Signal modulation as a mechanism for handicap disposal. Anim Behav 83:935–944

    Article  PubMed  Google Scholar 

  • Goldina A, Gavassa S, Stoddard PK (2011) Testosterone and 11-ketotestosteone have different regulatory effects on electric communication signals of male Brachyhypopomus gauderio. Horm Behav 60:139–147

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn M, Carr C (1985) Single electrocytes produce a sexually dimorphic signal in South American electric fish, Hypopomus occidentalis (Gymnotiformes, Hypopomidae). J Comp Physiol A 156:511–523

    Article  Google Scholar 

  • Hanika S, Kramer B (1999) Electric organ discharges of mormyrid fish as a possible cue for predatory catfish. Naturwissenschaften 86:286–288

    Article  CAS  Google Scholar 

  • Hanika S, Kramer B (2000) Electrosensory prey detection in the African sharptooth catfish, Clarias gariepinus (Clariidae), of a weakly electric mormyrid fish, the bulldog (Marcusenius macrolepidotus). Behav Ecol Sociobiol 48:218–228

    Article  Google Scholar 

  • Hopkins CD, Comfort NC, Bastian J, Bass AH (1990) Functional analysis of sexual dimorphism in an electric fish, Hypopomus pinnicaudatus, order Gymnotiformes. Brain Behav Evolut 35:350–367

    Article  CAS  Google Scholar 

  • Markham MR, Stoddard PK (2005) Adrenocorticotropic hormone enhances the masculinity of an electric communication signal by modulating the waveform and timing of action potentials within individual cells. J Neurosci 25:8746–8754

    Article  PubMed  CAS  Google Scholar 

  • Markham M, Allee S, Goldina A, Stoddard P (2009) Melanocortins regulate the electric waveforms of gymnotiform electric fish. Horm Behav 55:306–313

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J, Harper DGC (1995) Animal signals: models and terminology. J Theor Biol 177:305–311

    Article  Google Scholar 

  • Ryan MJ (1980) Female mate choice in a neotropical frog. Science 209:523–525

    Article  PubMed  CAS  Google Scholar 

  • Ryan MJ (1985) The Túngara Frog. The University of Chicago Press, Chicago

    Google Scholar 

  • Ryan MJ, Tuttle MD, Rand AS (1982) Bat predation and sexual advertisement in a Neotropical anuran. Am Nat 119:136–139

    Article  Google Scholar 

  • Salazar VK (2009) The effect of male–male competition and its underlying regulatory mechanisms on the electric signal of the gymnotiform fish Brachyhypopomus gauderio. Biological Sciences. Florida International University, Miami, p 164

    Google Scholar 

  • Salazar VL, Stoddard PK (2008) Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish Brachyhypopomus pinnicaudatus. J Exp Biol 211:1012–1020

    Article  PubMed  Google Scholar 

  • Salazar VL, Stoddard PK (2009) Social competition affect electric signal plasticity and steroid hormone levels in the gymnotiform fish Brachyhypopomus gauderio. Horm Behav 56:399–409

    Article  PubMed  CAS  Google Scholar 

  • Searcy WA, Nowicki S (2005) The Evolution of Animal Communication: Reliability and Deception in Signaling Systems. Princeton University Press, Princeton

    Google Scholar 

  • Seyfarth RM, Cheney DL, Bergman T, Fischer J, Zuberbuhler K, Hammerschmidt K (2010) The central importance of information in studies of animal communication. Anim Behav 80:3–8

    Article  Google Scholar 

  • Shieh KT, Wilson W, Winslow M, McBride DW, Hopkins CD (1996) Short-range orientation in electric fish: an experimental study of passive electrolocation. J Exp Biol 199:2383–2393

    PubMed  CAS  Google Scholar 

  • Silva A, Quintana L, Ardanaz JL, Macadar O (2002) Environmental and hormonal influences upon EOD waveform in gymnotiform pulse fish. J Physiol Paris 96:473–484

    Article  PubMed  CAS  Google Scholar 

  • Silva A, Zubizarreta L, Costa G (2010) Interspecific differences in agonistic behavior and its serotonergic modulation. International Congress of Neuroethology, Salamanca

    Google Scholar 

  • Stoddard PK (1998) Application of filters in bioacoustics. In: Hopp SL, Owren, Evans CS (eds) Animal Acoustic Communication. Springer-Verlag, New York

    Google Scholar 

  • Stoddard PK (1999) Predation enhances complexity in the evolution of electric fish signals. Nature 400:254–256

    Article  PubMed  CAS  Google Scholar 

  • Stoddard PK (2007) Plasticity of the electric organ discharge waveform: contexts, mechanisms, and implications for electrocommunication. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in Fishes. Science Publisher, Inc., Enfield, pp 623–646

    Google Scholar 

  • Stoddard PK, Markham MR (2008) Signal cloaking by electric fish. Bioscience 58:415–425

    Article  PubMed  Google Scholar 

  • Stoddard PK, Salazar VL (2011) Energetic cost of communication. J Exp Biol 214:200–205

    Article  PubMed  Google Scholar 

  • Stoddard PK, Rasnow B, Assad C (1999) Electric organ discharges of the gymnotiform fishes: III. Brachyhypopomus. J Comp Physiol A 184:609–630

    Article  PubMed  CAS  Google Scholar 

  • Stoddard PK, Markham MR, Salazar VL (2003) Serotonin modulates the electric waveform of the gymnotiform electric fish Brachyhypopomus pinnicaudatus. J Exp Biol 206:1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Stoddard PK, Zakon HH, Markham MR, McAnelly L (2006) Regulation and modulation of electric waveforms in gymnotiform electric fish. J Comp Physiol A 192:613–624

    Article  Google Scholar 

  • Stoddard PK, Markham MR, Salazar VL, Allee S (2007) Circadian rhythms in electric waveform structure and rate in the electric fish Brachyhypopomus pinnicaudatus. Physiol Behav 90:11–20

    Article  PubMed  CAS  Google Scholar 

  • Vehrencamp SL, Hall ML, Bohman ER, Depeine CD, Dalziell AH (2007) Song matching, overlapping, and switching in the banded wren: the sender’s perspective. Behav Ecol 18:849–859

    Article  PubMed  Google Scholar 

  • von der Emde G, Schwarz S, Gomez L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395:890–894

    Article  PubMed  Google Scholar 

  • Wingfield J, Hegner RE, Dufty AM Jr, Ball G (1990) The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136:829–846

    Article  Google Scholar 

Download references

Acknowledgments

We thank C. Curtis, A. Goldina, E. Gonzalez, E. Machado, J. Molina, and P. Perez for assistance in the lab. This work was supported by FIU University Graduate School’s Dissertation Evidence Acquisition Fellowship and Dissertation Year Fellowship to S.G., a NIGMS MARC U*STAR fellowship to J.P.R., and NSF grant IOS 0956603 to P.K.S. This paper is contribution # 248 to the FIU Tropical Biology Program. Experimental procedures were performed under the guidelines and approval of the Institutional Animal Care and Use Committee of the Florida International University, Miami, FL (protocol 09-012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sat Gavassa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavassa, S., Roach, J.P. & Stoddard, P.K. Social regulation of electric signal plasticity in male Brachyhypopomus gauderio . J Comp Physiol A 199, 375–384 (2013). https://doi.org/10.1007/s00359-013-0801-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0801-2

Keywords

Navigation