Skip to main content
Log in

Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae)

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals’ vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahl AS (1986) The role of vibrissae in behavior—a status review. Vet Res Commun 10:245–268

    PubMed  CAS  Google Scholar 

  • Blake RW (1983) Functional design and burst-and-coast swimming in fishes. Can J Zool 61:2491–2494

    Google Scholar 

  • Bleckmann H (1993) Role of the lateral line in fish behaviour. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman and Hall, London, pp 202–245

    Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. Gustav Fischer, Stuttgart

    Google Scholar 

  • Bleckmann H (2004) 3-D orientation with the octavolateralis system. J Physiol Paris 98:53–63

    PubMed  Google Scholar 

  • Bleckmann H (2008) Peripheral and central processing of lateral line information. J Comp Physiol A 194:145–158

    CAS  Google Scholar 

  • Bleckmann H, Münz H (1990) Physiology of lateral-line mechanoreceptors in a teleost with highly branched, multiple lateral lines. Brain Behav Evol 35:240–250

    PubMed  CAS  Google Scholar 

  • Bleckmann H, Zelick R (2009) Lateral line system of fish. Integr Zool 4:13–25

    PubMed  Google Scholar 

  • Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination of the surface feeding fish Aplocheilus lineatus—a prerequisite for prey localization? J Comp Physiol 143:485–490

    Google Scholar 

  • Bleckmann H, Weiss O, Bullock TH (1989) Physiology of the lateral line mechanoreceptive regions in the elasmobranch brain. J Comp Physiol A 164:459–474

    PubMed  CAS  Google Scholar 

  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991a) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J Comp Physiol A 168:749–757

    PubMed  CAS  Google Scholar 

  • Bleckmann H, Budelmann BU, Bullock TH (1991b) Peripheral and central nervous responses evoked by small water movements in a cephalopod. J Comp Physiol 168:247–257

    CAS  Google Scholar 

  • Bleckmann H, Borchardt M, Horn P, Görner P (1994) Stimulus discrimination and wave source localization in fishing spiders (Dolomedes triton and D. okefinokensis). J Comp Physiol 174:305–316

    Google Scholar 

  • Bleckmann H, Mogdans J, Engelmann J, Kröther S, Hanke W (2004) Das Seitenliniensystem: Wie Fische das Wasser fühlen. Biol Unserer Zeit 34:2–9

    Google Scholar 

  • Bowen WD, Tully D, Boness DJ, Bulheier BM, Marshall GJ (2002) Prey-dependent foraging tactics and prey profitability in a marine mammal. Mar Ecol Prog Ser 244:235–245

    Google Scholar 

  • Braun CB, Coombs S (2010) Vibratory sources as compound stimuli for the octavolateralis systems: dissection of specific stimulation channels using multiple behavioral approaches. J Exp Psychol 36:243–257

    Google Scholar 

  • Breithaupt T, Schmitz B, Tautz J (1995) Hydrodynamic orientation of crayfish (Procambarus clarkii) to swimming fish prey. J Comp Physiol 177:481–491

    CAS  Google Scholar 

  • Budelmann BU, Bleckmann H (1988) A lateral line analogue in cephalopods: water waves generate microphonic potentials in the epidermal head lines of Sepia and Lolliguncula. J Comp Physiol 164:1–5

    CAS  Google Scholar 

  • Burgess PR, Perl ER (1973) Cutaneous mechanoreceptors and nociceptors. In: Iggo A (ed) Handbook of sensory physiology 2: somatosensory systems. Springer, Berlin, pp 29–78

    Google Scholar 

  • Casaux R, Baroni A, Ramon A, Carlini A, Bertolin M, DiPrinzio CY (2009) Diet of the leopard seal Hydrurga leptonyx at the Danco Coast, Antarctic Peninsula. Polar Biol 32:307–310

    Google Scholar 

  • Conley RA, Coombs S (1998) Dipole source localization by mottled sculpin. III. Orientation after site-specific, unilateral denervation of the lateral line system. J Comp Physiol 183:335–344

    CAS  Google Scholar 

  • Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol 167:557–567

    CAS  Google Scholar 

  • Coombs S, Patton P (2009) Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). J Comp Physiol A 195:279–297

    Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–593

    Google Scholar 

  • Coombs S, Görner P, Münz H (1989) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York

    Google Scholar 

  • Coombs S, Braun CB, Donovan B (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204:337–348

    PubMed  CAS  Google Scholar 

  • Crespo JG (2011) A review of chemosensation and related behavior in aquatic insects. J Insect Sci 11:11–39

    Google Scholar 

  • Dailey DD, Braun CB (2009) The detection of pressure fluctuations, sonic audition, is the dominant mode of dipole-source detection in goldfish (Carassius auratus). J Exp Psychol 35:212–223

    Google Scholar 

  • Dailey DD, Braun CB (2011) Perception of frequency, amplitude, and azimuth of a vibratory dipole source by the octavolateralis system of goldfish (Carassius auratus). J Comp Psychol 125:286–295

    PubMed  Google Scholar 

  • Dehn L-A, Sheffield GG, Follmann EH, Duffy LK, Thomas DL, O’Hara TM (2007) Feeding ecology of phocid seals and some walrus in the Alaskan and Canadian Arctic as determined by stomach contents and stable isotope analysis. Polar Biol 30:167–181

    Google Scholar 

  • Dehnhardt G (2002) Sensory systems. In: Hoelzel AR (ed) Marine mammal biology. Blackwell, Oxford, pp 116–141

    Google Scholar 

  • Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbour seals (Phoca vitulina) for size differences of actively touched objects. J Exp Biol 198:2317–2323

    PubMed  CAS  Google Scholar 

  • Dehnhardt G, Mauck B (2008) Mechanoreception in secondarily aquatic vertebrates. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkely, pp 295–314

    Google Scholar 

  • Dehnhardt G, Mauck B, Bleckmann H (1998a) Seal whiskers detect water movements. Nature 394:235–236

    CAS  Google Scholar 

  • Dehnhardt G, Mauck B, Hyvärinen H (1998b) Ambient temperature does not affect the tactile sensitivity of mystacial vibrissae of harbour seals. J Exp Biol 201:3023–3029

    PubMed  CAS  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail following in harbor seals (Phoca vitulina). Science 293:102–104

    PubMed  CAS  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W (2004) Hydrodynamic perception in seals. In: Ilg U, Bülthoff HH, Mallot A (eds) Dynamic perception. Akademische Verlagsgesellschaft Aka GmbH, Berlin

    Google Scholar 

  • Denton EJ, Gray J (1985) Lateral-line-like antennae of certain of the Penaeidea (Crustacea, Decapoda, Natantia). Proc R Soc B 226:249

    Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral line of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 595–617

    Google Scholar 

  • Drucker EG, Lauder GV (2002) Experimental hydrodynamics of fish locomotion: functional insights from wake visualization. Integr Comp Biol 42:243–257

    PubMed  Google Scholar 

  • Dykes RW (1975) Afferent fibers from mystacial vibrissae of cats and seals. J Neurophysiol 38:650–662

    PubMed  CAS  Google Scholar 

  • Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and differences in the innervation of mystacial vibrissal follicle–sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449:103–119

    PubMed  Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still- and running water. J Comp Physiol 188:513–526

    CAS  Google Scholar 

  • Fay FH (1982) Ecology and biology of the Pacific walrus, Odobenus rosmarus divergens Illiger. N Am Fauna 74:1–279

    Google Scholar 

  • Fields DM, Shaeffer DS, Weissburg MJ (2002) Mechanical and neural responses from the mechanosensory hairs on the antennule of Gaussia princeps. Mar Ecol Prog Ser 227:173–186

    Google Scholar 

  • Gellermann LW (1933) Chance orders of alternating stimuli in visual discrimination experiments. J Genet Psychol 42:206–208

    Google Scholar 

  • Gentry RL (2009) Eared seals. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of marine mammals. Academic Press, Amsterdam, pp 339–342

    Google Scholar 

  • Ginter CC, Fish FE, Marshall CD (2010) Morphological analysis of the bumpy profile of phocid vibrissae. Mar Mamm Sci 26:733–743

    Google Scholar 

  • Ginter CC, DeWitt TJ, Fish FE, Marshall CD (2012) Fused traditional and geometric morphometrics demonstrate pinniped whisker diversity. PLoS ONE 7:1–10

    Google Scholar 

  • Gläser N, Wieskotten S, Otter C, Dehnhardt G, Hanke W (2011) Hydrodynamic trail following in a California sea lion (Zalophus californianus). J Comp Physiol A 197:141–151

    Google Scholar 

  • Goodman-Lowe GD (1998) Diet of the Hawaiian monk seal (Monachus schauinslandi) from the Northwestern Hawaiian islands during 1991 to 1994. Mar Biol 132:535–546

    Google Scholar 

  • Görner P (1973) The importance of the lateral line system for the perception of surface waves in the clawed toad, Xenopus laevis. Experientia 9:295–296

    Google Scholar 

  • Gottschaldt KM, Iggo A, Young DW (1973) Functional characteristics of mechanoreceptors in sinus hair follicles of cat. J Physiol Lond 235:287–315

    PubMed  CAS  Google Scholar 

  • Green K, Williams R (1986) Observations on food remains in feces of elephant, leopard and crab-eater seals. Polar Biol 6:43–45

    Google Scholar 

  • Halata Z (1975) The mechanoreceptors of the mammalian skin ultrastructure and morphological classification. Adv Anat Embryol Cell Biol 50:3–77

    PubMed  CAS  Google Scholar 

  • Halata Z, Munger BL (1980) Sensory nerve-endings in rhesus-monkey sinus hairs. J Comp Neurol 192:645–663

    PubMed  CAS  Google Scholar 

  • Hall-Aspland S, Rogers T (2007) Identification of hairs found in leopard seal (Hydrurga leptonyx) scats. Polar Biol 30:581–585

    Google Scholar 

  • Hammond PS, Hall AJ, Prime JH (1994a) The diet of gray seals around Orkney and other islands and mainland sites in north-eastern Scotland. J Appl Ecol 31:340–350

    Google Scholar 

  • Hammond PS, Hall AJ, Prime JH (1994b) The diet of grey seals in the inner and Outer Hebrides. J Appl Ecol 31:737–746

    Google Scholar 

  • Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) measured with scanning particle image velocimetry. J Exp Biol 207:1585–1596

    PubMed  Google Scholar 

  • Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200

    PubMed  CAS  Google Scholar 

  • Hanke FD, Dehnhardt G, Schaeffel F, Hanke W (2006a) Corneal topography, refractive state, and accommodation in harbor seals (Phoca vitulina). Vis Res 46:837–847

    PubMed  Google Scholar 

  • Hanke W, Römer R, Dehnhardt G (2006b) Visual fields and eye movements in a harbor seal (Phoca vitulina). Vis Res 46:2804–2814

    PubMed  Google Scholar 

  • Hanke FD, Hanke W, Scholtyssek C, Dehnhardt G (2009) Basic mechanisms in pinniped vision. Exp Brain Res 199:299–311

    PubMed  Google Scholar 

  • Hanke W, Witte M, Miersch L, Brede M, Oeffner J, Michael M, Hanke F, Leder A, Dehnhardt G (2010) Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J Exp Biol 213:2665–2672

    PubMed  Google Scholar 

  • Hanke FD, Scholtyssek C, Hanke W, Dehnhardt G (2011) Contrast sensitivity in a harbor seal (Phoca vitulina). J Comp Physiol 197:203–210

    Google Scholar 

  • Hanke W, Wieskotten S, Niesterok B, Miersch L, Witte M, Brede M, Leder A, Dehnhardt G (2012) Hydrodynamic perception in pinnipeds. In: Tropea C, Bleckmann H (eds) Nature-inspired fluid mechanics. Springer, Berlin, pp 225–240

    Google Scholar 

  • Harris GG, van Bergeijk W (1962) Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34:1831–1841

    Google Scholar 

  • Hartmann MJ, Johnson NJ, Towal RB, Assad C (2003) Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J Neurosci 23:6510–6519

    PubMed  CAS  Google Scholar 

  • Heath CB, Perrin WF (2009) California, Galapagos, and Japanese sea lions (Zalophus californianus, Zalophus wollebaeki, and Zalophus japonicus). In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of marine mammals. Academic Press, Amsterdam, pp 170–176

    Google Scholar 

  • Heinisch P, Wiese K (1987) Sensitivity to movement and vibration of water in the north-sea shrimp Crangon crangon. J Crustac Biol 7:401–413

    Google Scholar 

  • Hjelset AM, Andersen M, Gjertz I, Lydersen C, Gulliksen B (1999) Feeding habits of bearded seals (Erignathus barbatus) from the Svalbard area, Norway. Polar Biol 21:186–193

    Google Scholar 

  • Hückstädt LA, Burns JM, Koch PL, McDonald BI, Crocker DE, Costa DP (2012) Diet of a specialist in a changing environment: the crabeater seal along the western Antarctic Peninsula. Mar Ecol Prog Ser 455:287–301

    Google Scholar 

  • Humphrey JAC, Barth FG (2008) Medium-flow sensing hairs: biomechanics and models. In: Casas J, Simpson SJ (eds) Advances in insect physiology: insect mechanics and control, vol 34. Academic Press, London, pp 1–80

    Google Scholar 

  • Hyvärinen H, Palviainen A, Strandberg U, Holopainen IJ (2009) Aquatic environment and differentiation of vibrissae: comparison of sinus hair systems of ringed seal, otter and pole cat. Brain Behav Evol 74:268–279

    PubMed  Google Scholar 

  • Kastelein RA, Muller M, Terlouw A (1994) Oral suction of the Pacific walrus (Odobenus rosmarus divergens) in air and under water. Z Säugetierk Intern J Mamm Biol 59:105–115

    Google Scholar 

  • Killian KA, Page CH (1992) Mechanosensory afferents innervating the swimmerets of the lobster. 2. Afferents activated by hair deflection. J Comp Physiol A 170:501–508

    PubMed  CAS  Google Scholar 

  • King JE (1983) Seals of the world. Cornell University Press, Ithaca

    Google Scholar 

  • Ladygina TF, Popov VV, Supin AY (1985) Topical organization of somatic projections in the fur seal cerebral cortex. Neurophysiology 17:246–252

    Google Scholar 

  • Ling JK (1977) Vibrissae of marine mammals. In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic Press, London, pp 387–415

    Google Scholar 

  • Marshall CD, Amin H, Kovacs KM, Lydersen C (2006) Microstructure and innervation of the mystacial vibrissal follicle–sinus complex in bearded seals, Erignathus barbatus (Pinnipedia : Phocidae). Anat Rec A 288:13–25

    Google Scholar 

  • Marshall CD, Kovacs KM, Lydersen C (2008) Feeding kinematics, suction and hydraulic jetting capabilities in bearded seals (Erignathus barbatus). J Exp Biol 211:699–708

    PubMed  Google Scholar 

  • McConnell BJ, Fedak MA, Lovell P, Hammond PS (1999) Movements and foraging areas of grey seals in the North Sea. J Appl Ecol 36:573–590

    Google Scholar 

  • McKenzie J, Wynne KM (2008) Spatial and temporal variation in the diet of Steller sea lions in the Kodiak Archipelago, 1999 to 2005. Mar Ecol Prog Ser 360:265–283

    Google Scholar 

  • Mecenero S, Kirkman SP, Roux JP (2005) Seabirds in the diet of Cape fur seals Arctocephalus pusillus pusillus at three mainland breeding colonies in Namibia. Afr J Mar Sci 27:509–512

    Google Scholar 

  • Mecenero S, Roux JP, Underhill LG, Bester MN (2006) Diet of Cape fur seals Arctocephalus pusillus pusillus at three mainland breeding colonies in Namibia. 1. Spatial variation. Afr J Mar Sci 28:57–71

    Google Scholar 

  • Meyer G, Klein A, Mogdans J, Bleckmann H (2012) Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere. J Comp Physiol A 198:639–653

    Google Scholar 

  • Miersch L (2002) Konstruktion eines Messaufbaus zur Untersuchung strömungsinduzierter Schwingungen an natürlichen Haarsensoren (Vibrissen). Fachbereich Physik, Freie Universität Berlin, Berlin

  • Miersch L, Hanke W, Wieskotten S, Hanke FD, Oeffner J, Leder A, Brede M, Witte M, Dehnhardt G (2011) Flow sensing by pinniped whiskers. Phil Trans R Soc B 366:3077–3084

    PubMed  CAS  Google Scholar 

  • Milne-Thompson LM (1968) Theoretical hydrodynamics. Macmillan, London

    Google Scholar 

  • Mitchinson B, Gurney KN, Redgrave P, Melhuish C, Pipe AG, Pearson M, Gilhespy I, Prescott TJ (2004) Empirically inspired simulated electro-mechanical model of the rat mystacial follicle–sinus complex. Proc R Soc B 271:2509–2516

    PubMed  Google Scholar 

  • Mogdans J, Nauroth IE (2011) The oscar, Astronotus ocellatus, detects and discriminates dipole stimuli with the lateral line system. J Comp Physiol A 197:959–968

    Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157:555–568

    Google Scholar 

  • Nauen JC, Lauder GV (2002) Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae). J Exp Biol 205:1709–1724

    PubMed  Google Scholar 

  • Nauroth IE, Mogdans J (2009) Goldfish and oscars have comparable responsiveness to dipole stimuli. Naturwissenschaften 96:1401–1409

    PubMed  CAS  Google Scholar 

  • Neimark MA, Andermann ML, Hopfield JJ, Moore CI (2003) Vibrissa resonance as a transduction mechanism for tactile encoding. J Neurosci 23:6499–6509

    PubMed  CAS  Google Scholar 

  • Niesterok B, Hanke W (2012) Hydrodynamic patterns from fast-starts in teleost fish and their possible relevance to predator–prey interactions. J Comp Physiol A. doi:10.1007/s00359-012-0775-5

  • Rice FL, Mance A, Munger BL (1986) A comparative light microscopical analysis of the sensory innervation of the mysticial pad. 1. Innervation of vibrissal follicle–sinus complexes. J Comp Neurol 252:154–174

    PubMed  CAS  Google Scholar 

  • Rice FL, Kinnman E, Aldskogius H, Johansson O, Arvidsson J (1993) The innervation of the mystacial pad of the rat as revealed by PGP 9.5 immunofluorescence. J Comp Neurol 337:366–385

    PubMed  CAS  Google Scholar 

  • Rice FL, Fundin BT, Arvidsson J, Aldskogius H, Johansson O (1997) Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J Comp Neurol 385:149–184

    PubMed  CAS  Google Scholar 

  • Schulte-Pelkum N, Wieskotten S, Hanke W, Dehnhardt G, Mauck B (2007) Tracking of biogenic hydrodynamic trails in a harbor seal (Phoca vitulina). J Exp Biol 210:781–787

    PubMed  CAS  Google Scholar 

  • Schwalbe MAB, Bassett DK, Webb JF (2012) Feeding in the dark: lateral-line-mediated prey detection in the peacock cichlid Aulonocara stuartgranti. J Exp Biol 215:2060–2071

    PubMed  Google Scholar 

  • Shariff K, Leonard A (1992) Vortex rings. Annu Rev Fluid Mech 24:235–279

    Google Scholar 

  • Sharples RJ, Arrizabalaga B, Hammond PS (2009) Seals, sandeels and salmon: diet of harbour seals in St. Andrews Bay and the Tay Estuary, southeast Scotland. Mar Ecol Prog Ser 390:265–276

    Google Scholar 

  • Simpkins MA, Kelly BP, Wartzok D (2001a) Three-dimensional analysis of search behaviour by ringed seals. Anim Behav 62:67–72

    Google Scholar 

  • Simpkins MA, Kelly BP, Wartzok D (2001b) Three-dimensional diving behaviors of ringed seals (Phoca hispida). Mar Mamm Sci 17:909–925

    Google Scholar 

  • Simpkins MA, Kelly BP, Wartzok D (2001c) Three-dimensional movements within individual dives by ringed seals (Phoca hispida). Can J Zool 79:1455–1464

    Google Scholar 

  • Siniff DB, Stirling I, Bengston JL, Reichle RA (1979) Social and reproductive behavior of crabeater seals (Lobodon carcinophagus) during the Australian spring. Can J Zool 57:2243–2255

    Google Scholar 

  • Suuronen P, Lehtonen E (2012) The role of salmonids in the diet of grey and ringed seals in the Bothnian Bay, northern Baltic Sea. Fish Res 125:283–288

    Google Scholar 

  • Tautz J, Masters MW, Aicher B, Markl H (1981) A new type of water vibration receptor on the crayfish antenna. J Comp Physiol 144:533–541

    Google Scholar 

  • Watkins WA, Wartzok D (1985) Sensory biophysics of marine mammals. Mar Mamm Sci 1:219–260

    Google Scholar 

  • Weiffen M, Möller B, Mauck B, Dehnhardt G (2006) Effect of water turbidity on the visual acuity of harbor seals (Phoca vitulina). Vis Res 46:1777–1783

    PubMed  Google Scholar 

  • Welch HE, Bergmann MA, Siferd TD, Martin KA, Curtis MF, Crawford RE, Conover RJ, Hop H (1992) Energy-flow through the marine ecosystem of the Lancaster sound region, Arctic Canada. Arctic 45:343–357

    Google Scholar 

  • Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:1379–1392

    CAS  Google Scholar 

  • Wiese K (1974) Mechanoreceptive system of prey localization in Notonecta. 2. Principle of prey localization. J Comp Physiol 92:317–325

    Google Scholar 

  • Wiese K (1976) Mechanoreceptors for near-field water displacements in crayfish. J Neurophysiol 39:816–833

    PubMed  CAS  Google Scholar 

  • Wieskotten S, Dehnhardt G, Mauck B, Miersch L, Hanke W (2010a) Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). J Exp Biol 213:2665–2675

    Google Scholar 

  • Wieskotten S, Dehnhardt G, Mauck B, Miersch L, Hanke W (2010b) The impact of glide phases on the trackability of hydrodynamic trails in harbour seals (Phoca vitulina). J Exp Biol 213:3734–3740

    PubMed  CAS  Google Scholar 

  • Wieskotten S, Mauck B, Miersch L, Dehnhardt G, Hanke W (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930

    PubMed  Google Scholar 

  • Witte M, Hanke W, Wieskotten S, Miersch L, Brede M, Dehnhardt G, Leder A (2012) On the wake flow dynamics behind harbor seal vibrissae—a fluid mechanical explanation for an extraordinary capability. In: Tropea C, Bleckmann H (eds) Nature-inspired flow mechanics. Springer, Berlin, pp 241–260

    Google Scholar 

  • Yen J, Lenz PH, Gassie DV, Hartline DK (1992) Mechanoreception in marine copepods—ecophysiological studies on the 1st antennae. J Plankton Res 14:495–512

    Google Scholar 

Download references

Acknowledgments

The authors’ original work was funded by grants of the German Research Foundation (DFG) to W.H. and G.D., and the Volkswagenstiftung to G.D. We thank the DFG and the Office of Naval Research Global for supporting a conference on Sensory Biology of Aquatic Mammals in October 2012 at the Marine Science Center Rostock, accompanying this special issue of the Journal of Comparative Physiology A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf Hanke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanke, W., Wieskotten, S., Marshall, C. et al. Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae). J Comp Physiol A 199, 421–440 (2013). https://doi.org/10.1007/s00359-012-0778-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0778-2

Keywords

Navigation