Skip to main content
Log in

Systematic variations in microvilli banding patterns along fiddler crab rhabdoms

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Polarisation sensitivity is based on the regular alignment of dichroic photopigment molecules within photoreceptor cells. In crustaceans, this is achieved by regularly stacking photopigment-rich microvilli in alternating orthogonal bands within fused rhabdoms. Despite being critical for the efficient detection of polarised light, very little research has focused on the detailed arrangement of these microvilli bands. We report here a number of hitherto undescribed, but functionally relevant changes in the organisation of microvilli banding patterns, both within receptors, and across the compound eye of fiddler crabs. In all ommatidia, microvilli bands increase in length from the distal to the proximal ends of the rhabdom. In equatorial rhabdoms, horizontal bands increase gradually from 3 rows of microvilli distally to 20 rows proximally. In contrast, vertical equatorial microvilli bands contain 15–20 rows of microvilli in the distal 30 µm of the rhabdom, shortening to 10 rows over the next 30 µm and then increase in length to 20 rows in parallel with horizontal bands. In the dorsal eye, horizontal microvilli occupy only half the cross-sectional area as vertical microvilli bands. Modelling absorption along the length of fiddler crab rhabdoms suggests that (1) increasing band length assures that photon absorption probability per band remains constant along the length of photoreceptors, indicating that individual bands may act as units of transduction or adaptation; (2) the different organisation of microvilli bands in equatorial and dorsal rhabdoms tune receptors to the degree and the information content of polarised light in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alkaladi A (2008) The functional anatomy of the fiddler crab compound eye. PhD Thesis, The Australian National University, Canberra

  • Altevogt R, von Hagen HO (1964) Über die Orientierung von Uca tangeri Eydoux im Freiland. Z Morph Ökol Tiere 53:636–656

    Article  Google Scholar 

  • Arikawa K, Kawamata K, Suzuki T, Eguchi E (1987) Daily changes of structure, function and rhodopsin content in the compound eye of the crab Hemigrapsus sanguineus. J Comp Physiol A 161:161–174

    Article  PubMed  CAS  Google Scholar 

  • Ball EE, Kao LC, Stone RC, Land MF (1986) Eye structure and optics in the pelagic shrimp Acetes sibogae (Decapoda, Natantia Sergestidae) in relation to light-dark adaption and natural history. Phil Trans R Soc Lond B 313:251–270

    Article  Google Scholar 

  • Bernard GD, Wehner R (1977) Functional similarities between polarization vision and color vision. Vision Res 17:1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Chiussi R, Díaz H (2001) Multiple reference usage in the zonal recovery behaviour by the fiddler crab Uca cumulata. J Crust Biol 21:407–413

    Article  Google Scholar 

  • Cronin TW, Forward RB (1988) The visual pigments of crabs. I. Spectral properties. J Comp Physiol A 162:267–275

    Article  Google Scholar 

  • Davies A, Gowen BE, Krebs AM, Schertler GFX, Saibil HR (2001) Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane. J Mol Biol 314:455–463

    Article  PubMed  CAS  Google Scholar 

  • Dembowski J (1913) Über den Bau der Augen von Ocypode ceratophthalma Fabr. Zool Jb Anat 36:513–524

    Google Scholar 

  • Douglass JK, Forward RB (1989) The ontogeny of facultative superposition optics in a shrimp eye: hatching through metamorphosis. Cell Tissue Res 258:289–300

    Article  Google Scholar 

  • Eguchi E (1965) Rhabdom structure and receptor potentials in single crayfish retinular cells. J Cell Comp Physiol 66:411–429

    Article  CAS  Google Scholar 

  • Frantsevich L, Govardovski V, Gribakin F, Nikolajev G, Pichka V, Polanovsky A, Shevchenko V, Zolotov V (1977) Astroorientation in Lethrus (Coleoptera, Scarabaeidae). J Comp Physiol A 121:253–271

    Article  Google Scholar 

  • Frings S (2009) Primary processes in sensory cells: current advances. J Comp Physiol A 195:1–19

    Article  Google Scholar 

  • Gaten E, Herring PJ, Shelton PMJ, Johnson ML (1998) Comparative morphology of the eyes of postlarval Bresiliid shrimps from the region of hydrothermal vents. Biol Bull 194:267–280

    Article  Google Scholar 

  • Glantz RM (2007) The distribution of polarization sensitivity in the crayfish retinula. J Comp Physiol A 193:893–901

    Article  Google Scholar 

  • Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin, pp 145–224

    Google Scholar 

  • Hemmi JM (2005) Predator avoidance in fiddler crabs: 2. The visual cues. Anim Behav 69:615–625

    Article  Google Scholar 

  • Hemmi JM, Zeil J (2003) Burrow surveillance in fiddler crabs—II. The sensory cues. J Exp Biol 206:3951–3961

    Article  PubMed  Google Scholar 

  • Herrnkind WF (1966) The ability of young and adult sand fiddler crabs, Uca pugilator (Bosc), to orient to polarized light. Am Zool 6:298–299

    Google Scholar 

  • Herrnkind WF (1968) Adaptive visually-directed orientation in Uca pugilator. Am Zool 8:585–598

    Google Scholar 

  • How MJ, Pignatelli V, Temple SE, Marshall NJ, Hemmi JM (2012) High e-vector acuity in the polarisation vision system of the fiddler crab Uca vomeris. J Exp Biol 215:2128–2134

    Article  PubMed  Google Scholar 

  • Howard J, Blakeslee B, Laughlin SB (1987) The Intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc Lond B 231:415–435

    Article  PubMed  CAS  Google Scholar 

  • Kleinlogel S, Marshall NJ (2006) Electrophysiological evidence for linear polarization sensitivity in the compound eyes of the stomatopod crustacean Gonodactylus chiragra. J Exp Biol 209:4262–4272

    Article  PubMed  Google Scholar 

  • Kunze P (1967) Histologische Untersuchungen zum Bau des Auges von Ocypode cursor (Brachyura). Z Zellforschung 82:466–478

    Article  CAS  Google Scholar 

  • Kunze P, Boschek CB (1968) Elektronenmikroskopische Untersuchung zur Form der achten Retinulazelle bei Ocypode. Z Naturforsch 23:568b–569b

    Google Scholar 

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    Article  PubMed  CAS  Google Scholar 

  • Land MF, Layne JE (1995) The visual control of behavior in fiddler crabs. 1. Resolution, thresholds and the role of the horizon. J Comp Physiol A 177:81–90

    Article  Google Scholar 

  • Land MF, Osorio DC (1990) Waveguide modes and pupil action in the eyes of butterflies. Proc R Soc B 241:93–100

    Article  Google Scholar 

  • Layne JE (1998) Retinal location is the key to identifying predators in fiddler crabs (Uca pugilator). J Exp Biol 201:2253–2261

    PubMed  CAS  Google Scholar 

  • Meyer-Rochow VB (1974) Fine structural changes in dark-light adaptation in relation to unit studies of an insect compound eye with a crustacean-like rhabdom. J Insect Physiol 20:573–589

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Rochow VB, Walsh S (1978) The eyes of mesopelagic crustaceans: III. Thysanopoda tricuspidata (Euphausiacea). Cell Tissue Res 195:59–79

    Article  PubMed  CAS  Google Scholar 

  • Nalbach HO, Nalbach G, Forzin L (1989) Visual control of eye-stalk orientation in crabs: vertical optokinetics, visual fixation of the horizon, and eye design. J Comp Physiol A 165:577–587

    Article  Google Scholar 

  • Nässel DR, Waterman TH (1979) Massive diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation. J Comp Physiol A 131:205–216

    Article  Google Scholar 

  • Nilsson DE, Howard J (1989) Intensity and polarization of the eyeshine in butterflies. J Comp Physiol A 166:51–56

    Article  Google Scholar 

  • Nilsson D-E, Labhart T, Meyer E (1987) Photoreceptor design and optical properties affecting polarization sensitivity in ants and crickets. J Comp Physiol A 161:645–658

    Article  Google Scholar 

  • Qiu X, Vanhoutte K, Stavenga D, Arikawa K (2002) Ommatidial heterogeneity in the compound eye of the male small white butterfly, Pieris rapae crucivora. Cell Tissue Res 307:371–379

    Article  PubMed  Google Scholar 

  • Rajkumar P, Rollmann SM, Cook TA, Layne JE (2010) Molecular evidence for color discrimination in the Atlantic sand fiddler crab, Uca pugilator. J Exp Biol 213:4240–4248

    Article  PubMed  CAS  Google Scholar 

  • Roberts NW, Porter ML, Cronin TW (2011) The molecular basis of mechanisms underlying polarization vision. Phil Trans R Soc B 366:627–637

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg MS (2001) The systematics and taxonomy of fiddler crabs: a phylogeny of the genus Uca. J Crust Biol 21:839–869

    Article  Google Scholar 

  • Rosenberg J, Langer H (2001) Ultrastructural changes of rhabdoms of the eyes of Ocypode species in relation to different regimes of light and dark adaptation. J Crust Biol 21:345–353

    Article  Google Scholar 

  • Saibil HR (1982) An ordered membrane-cytoskeleton network in squid photoreceptor microvilli. J Mol Biol 158:435–456

    Article  PubMed  CAS  Google Scholar 

  • Schwemer J (1989) Visual pigments of compound eyes—structure, photochemistry, and regeneration. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 112–133

    Chapter  Google Scholar 

  • Shaw SR (1969) Sense-cell structure and interspecies comparisons of polarized-light absorption in arthropod compound eyes. Vision Res 9:1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Shaw SR, Stowe S (1982) Photoreception. In: Atwood HL, Sandeman DC (eds) The biology of Crustacea. Neurobiology: structure and function, vol. 3. Academic Press, New York, pp 291–367

  • Shelton PMJ, Gaten E, Chapman CJ (1986) Accessory pigment distribution and migration in the compound eye of Nephrops norvegicus (L.) (Crustacea: Decapoda). J Exp Mar Biol Ecol 98:185–198

    Article  Google Scholar 

  • Smolka J, Hemmi JM (2009) Topography of vision and behaviour. J Exp Biol 212:3522–3532

    Article  PubMed  Google Scholar 

  • Smolka J, Zeil J, Hemmi JM (2011) Natural visual cues eliciting predator avoidance in fiddler crabs. Proc R Soc B 278:3584–3592

    Article  PubMed  Google Scholar 

  • Snyder AW (1973) Polarisation sensitivity of individual retinula cells. J Comp Physiol 83:331–360

    Article  Google Scholar 

  • Snyder AW, Laughlin SB (1975) Dichroism and absorption by photoreceptors. J Comp Physiol A 100:101–116

    Article  Google Scholar 

  • Stavenga DG (1989) Pigments in compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, pp 152–172

    Chapter  Google Scholar 

  • Stavenga DG (2003a) Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics. J Comp Physiol A 189:1–17

    CAS  Google Scholar 

  • Stavenga DG (2003b) Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila. J Comp Physiol A 189:189–202

    CAS  Google Scholar 

  • Stavenga DG, Hardie R (2011) Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors. J Comp Physiol A 197:227–241

    Article  CAS  Google Scholar 

  • Stowe S (1980a) Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk. Cell Tissue Res 211:419–440

    Article  PubMed  CAS  Google Scholar 

  • Stowe S (1980b) Spectral sensitivity and retinal pigment movement in the crab Leptograpsus variegatus (Fabricius). J Exp Biol 87:73–98

    PubMed  CAS  Google Scholar 

  • Stowe S (1982) Rhabdom synthesis in isolated eyestalks and retinae of the crab Leptograpsus variegatus. J Comp Physiol A 148:313–321

    Article  Google Scholar 

  • Stowe S (1983) A theoretical explanation of intensity-independent variation of polarisation sensitivity in Crustacean retinula cells. J Comp Physiol A 153:435–441

    Article  Google Scholar 

  • Toh Y (1987) Diurnal changes of rhabdom structures in the compound eye of the Grapsid crab, Hemigrapsus penicillatus. J Electron Microsc 36:213–223

    Google Scholar 

  • Warrant EJ, Nilsson D-E (1998) Absorption of white light in photoreceptors. Vision Res 38:195–207

    Article  PubMed  CAS  Google Scholar 

  • Waterman TH (1975) The optics of polarization sensitivity. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin, pp 339–371

    Chapter  Google Scholar 

  • Waterman TH (1981) Polarization sensitivity. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, New York, pp 281–469

    Google Scholar 

  • Waterman TH, Fernández HR, Goldsmith TH (1969) Dichroism of photosensitive pigment in rhabdoms of the crayfish Orconectes. J Gen Physiol 54:415–432

    Article  PubMed  CAS  Google Scholar 

  • Wehner R, Labhart T (2006) Polarisation vision. In: Warrant EJ, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 291–348

    Google Scholar 

  • Wunderer H, Seifert P, Pilstl F, Lange A, Smola U (1990) Crustacean-like rhabdoms at the dorsal rim of several dipteran eyes (Syrphidae, Tabanidae). Naturwissenschaften 77:343–345

    Article  Google Scholar 

  • Zeil J (1990) Substratum slope and the alignment of acute zones in semi-terrestrial crabs (Ocypode ceratophthalmus). J Exp Biol 152:573–576

    Google Scholar 

  • Zeil J, Al-Mutairi MM (1996) The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab Uca lactea annulipes (Ocypodidae, Brachyura, Decapoda). J Exp Biol 199:1569–1577

    PubMed  Google Scholar 

  • Zeil J, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A 192:1–25

    Article  Google Scholar 

  • Zeil J, Hofmann M (2001) Signals from ‘crabworld’: cuticular reflections in a fiddler crab colony. J Exp Biol 204:2561–2569

    PubMed  CAS  Google Scholar 

  • Zeil J, Hemmi JM, Backwell PRY (2006) Fiddler crabs. Curr Biol 16:R40–R41

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Peter McIntyre, Sally Stowe, the ANU Electron Microscopy Unit and Willi Ribi for histological help and advice, and to Justin Marshall for comments on the manuscript. We thank Eric Warrant and a very constructive referee for their time to discuss absorption modelling and their help with designing it. The work was supported by a PhD scholarship from the Saudi Arabia Ministry of Education and a King Abdulaziz University travel grant for A.A., by an Asian Office of Aerospace Research and Development and Air Force Office of Scientific Research grant for M.J.H., and by the Australian Research Council Centre of Excellence in Vision Science for A.A. and J.Z.

Ethical standards

The experiments comply with current Australian laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Alkaladi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkaladi, A., How, M.J. & Zeil, J. Systematic variations in microvilli banding patterns along fiddler crab rhabdoms. J Comp Physiol A 199, 99–113 (2013). https://doi.org/10.1007/s00359-012-0771-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0771-9

Keywords

Navigation