Skip to main content
Log in

Micro-scale fluid and odorant transport to antennules of the crayfish, Procambarus clarkii

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

A numerical model was developed to determine advective–diffusive transport of odorant molecules to olfactory appendages of the crayfish, Procambarus clarkii. We tested the extent of molecule transport to the surfaces of aesthetasc sensilla during an antennule flick and the degree of odorant exchange during subsequent flicks. During the rapid downstroke of a flick, odorant molecules are advected between adjacent aesthetascs, while during the slower return stroke, these odorants are trapped between the sensilla and molecular diffusion occurs over a sufficient time period to transport odorants to aesthetasc surfaces. During subsequent flicks, up to 97.6 % of these odorants are replaced with new odorant molecules. The concentration of molecules captured along aesthetasc surfaces was found to increase with increased gap spacing between aesthetascs, flick speed, and distance from the proximal end of the aesthetasc, but these changes in morphology and flicking kinematics reduce the animal’s ability to take discrete samples of the odorant-laden fluid environment with each flick. Results suggest that antennule flicking allows discrete sampling of the time- and space-varying odorant signal, and high concentration odorant filaments can be distinguished from more diffuse, low concentration filaments through changes in both the timing and the encounter rate of odorant molecules to aesthetasc surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ache BW, Young JM (2005) Olfaction: diverse species, conserved principles. Neuron 48:417–430

    Article  PubMed  CAS  Google Scholar 

  • Adam G, Delbrück M (1968) Structural chemistry and molecular biology. Freeman, San Francisco, pp 198–215

    Google Scholar 

  • Atema J (1995) Chemical signals in the marine environment: dispersal, detection, and temporal signal analysis. Proc Natl Acad Sci USA 92(1):62–66

    Article  PubMed  CAS  Google Scholar 

  • Atema J (1996) Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors. Biol Bull 191:129–138

    Article  Google Scholar 

  • Beltz BS, Kordas K, Lee MM, Long JL, Benton JB, Sandeman DC (2003) Ecological, evolutionary and functional correlates of sensilla number and glomerular density in the olfactory system of decapod crustaceans. J Comp Neurol 455:260–269

    Article  PubMed  Google Scholar 

  • Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20(2):193–219

    Article  PubMed  CAS  Google Scholar 

  • Boeckh J, Kaissling K, Schneider D (1965) Insect olfactory receptors. Cold Spring Harb Symp Quant Biol 30:263–280

    Article  PubMed  CAS  Google Scholar 

  • Borroni PF, Atema J (1988) Adaptation in chemoreceptor cells. J Comp Physiol A 164:67–74

    Article  PubMed  CAS  Google Scholar 

  • Bossert WH, Wilson EO (1963) The analysis of olfactory communication among animals. J Theor Biol 5:443–469

    Article  PubMed  CAS  Google Scholar 

  • Cheer A, Koehl M (1987) Fluid flow through filtering appendages of insects. Math Med Biol 4(3):185

    Article  Google Scholar 

  • Crimaldi JP, Koseff JR (2001) High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume. Exp Fluids 31(1):90–102

    Article  Google Scholar 

  • Denny MW (1993) Air and water. Princeton University Press, Princeton

    Google Scholar 

  • Derby CD, Steullet P, Horner AJ, Cate HS (2001) The sensory basis of feeding behaviour in the Caribbean spiny lobster, Panulirus argus. Mar Freshwater Res 52:1339–1350

    Article  Google Scholar 

  • DeSimone JA (1981) Physicochemical principles in taste and olfaction. In: Cagan RH, Kane MR (eds) Biochemistry of taste and olfaction. Academic Press, New York, pp 213–229

    Google Scholar 

  • Futrelle R (1984) How molecules get to their detectors: the physics of diffusion of insect pheromones. Trends Neurosci 7(4):116–120

    Article  Google Scholar 

  • Getchell TV, Getchell ML (1977) Early events in vertebrate olfaction. Chem Senses 2(3):313

    Article  CAS  Google Scholar 

  • Gomez G, Atema J (1996a) Temporal resolution in olfaction II: time course of recovery from adaptation in lobster chemoreceptor cells. J Neurophysiol 76:1340–1343

    PubMed  CAS  Google Scholar 

  • Gomez G, Atema J (1996b) Temporal resolution in olfaction: stimulus integration time of lobster chemoreceptor cells. J Exp Biol 199:1771–1779

    PubMed  Google Scholar 

  • Gomez G, Voigt R, Atema J (1999) Temporal resolution in olfaction III: flicker fusion and concentration-dependent synchronization with stimulus pulse trains of antennular chemoreceptor cells in the American lobster. J Comp Physiol A 185:427–436

    Article  Google Scholar 

  • Grasso FW, Basil JA (2002) How lobsters, crayfishes, and crabs locate sources of odor: current perspectives and future directions. Curr Opin Neurobiol 12(6):721–727

    Article  PubMed  CAS  Google Scholar 

  • Horner AJ, Schmidt M, Edwards DH, Derby CD (2008) Role of the olfactory pathway in agonistic behavior of crayfish, Procambarus clarkii. Inverteb Neurosci 8(1):11–18

    Article  Google Scholar 

  • Humphrey J, Mellon D (2007) Analytical and numerical investigation of the flow past the lateral antennular flagellum of the crayfish Procambarus clarkii. J Exp Biol 210(Pt 17):2969

    Article  PubMed  Google Scholar 

  • Jackson JL, Webster DR, Rahman S, Weissburg MJ (2007) Bed-roughness effects on boundary-layer turbulence and consequences for odor-tracking behavior of blue crabs (Callinectes sapidus). Limnol Oceanogr 52:1883–1897

    Article  Google Scholar 

  • Johnson ME, Atema J (2005) The olfactory pathway for individual recognition in the American lobster Homarus americanus. J Exp Biol 208:2865–2872

    Article  PubMed  Google Scholar 

  • Keller TA, Weissburg MJ (2004) Effects of odor flux and pulse rate on chemosensory tracking in turbulent odor plumes by the blue crab, Callinectes sapidus. Biol Bull 207:44–55

    Article  PubMed  Google Scholar 

  • Keller TA, Powell I, Weissburg MJ (2003) Role of olfactory appendages in chemically mediated orientation of blue crabs. Mar Ecol Prog Ser 261:217–231

    Article  Google Scholar 

  • Koehl MAR (2006) The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem Senses 31(2):93–105

    Article  PubMed  CAS  Google Scholar 

  • Koehl MAR (2011) Hydrodynamics of sniffing by crustaceans. In: Breithaupt T, Theil M (eds) Chemical communication in crustaceans. Springer, Berlin, pp 85–102

    Google Scholar 

  • Koehl MAR, Koseff JR, Crimaldi JP, McCay MG, Cooper T, Wiley MB, Moore PA (2001) Lobster sniffing: antennule design and hydrodynamic filtering of information in an odor plume. Science 294:1948–1951

    Article  PubMed  CAS  Google Scholar 

  • Lide DR (1991) Handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • Mankin R, Mayer M (1984) The insect antenna is not a molecular sieve. Cell Mol Life Sci 40(11):1251–1252

    Article  CAS  Google Scholar 

  • Marschall HP, Ache BW (1989) Response dynamics of lobster olfactory neurons during simulated natural sampling. Chem Senses 14:725

    Google Scholar 

  • Mead KS, Wiley MB, Koehl MAR, Koseff JR (2003) Fine-scale patterns of odor encounter by the antennules of mantis shrimp tracking turbulent plumes in wave-affected and unidirectional flow. J Exp Biol 206:181–193

    Article  PubMed  Google Scholar 

  • Mellon D (1997) Physiological characterization of antennular flicking reflexes in the crayfish. J Comp Physiol A 180(5):553–565

    Article  Google Scholar 

  • Mellon D (2005) Integration of hydrodynamic and odorant inputs by local interneurons of the crayfish deutocerebrum. J Exp Biol 208:3711–3720

    Article  PubMed  Google Scholar 

  • Mellon D, Humphrey J (2007) Directional asymmetry in responses of local interneurons in the crayfish deutocerebrum to hydrodynamic stimulation of the lateral antennular flagellum. J Exp Biol 210:2961–2968

    Article  PubMed  Google Scholar 

  • Mellon D, Tuten HR, Redick J (1989) Distribution of radioactive leucine following uptake by olfactory sensory neurons in normal and heteromorphic crayfish antennules. J Comp Neurol 280(4):645–662

    Article  PubMed  Google Scholar 

  • Moore P, Crimaldi J (2004) Odor landscapes and animal behavior: tracking odor plumes in different physical worlds. J Marine Syst 49(1–4):55–64

    Article  Google Scholar 

  • Moore P, Grills JL (1999) Chemical orientation to food by the crayfish Orconectes rusticus: influence of hydrodynamics. Animal Behav 58:953–963

    Article  Google Scholar 

  • Moore P, Gerhardt GA, Atema J (1989) High resolution spatio-temporal analysis of aquatic chemical signals using microelectrochemical electrodes. Chem Senses 14(6):829

    Article  CAS  Google Scholar 

  • Murray JD (1977) Nonlinear-differential-equation models in biology. Oxford University Press, Oxford

    Google Scholar 

  • Nachbar RB, Morton TH (1981) A Gas chromatographic (GLPC) model for the sense of smell. Variation of olfactory sensitivity with conditions of stimulation. J Theor Biol 89(3):387–407

    Article  PubMed  CAS  Google Scholar 

  • Page JL, Dickman BD, Webster DR, Weissburg MJ (2011) Getting ahead: context-dependent responses to odorant filaments drive along-stream progress during odor tracking in blue crabs. J Exp Biol 214:1498–1512

    Article  PubMed  Google Scholar 

  • Reidenbach MA, Koehl M (2011) The spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume. J Exp Biol 214(18):3138–3153

    Article  PubMed  Google Scholar 

  • Reidenbach MA, George N, Koehl M (2008) Antennule morphology and flicking kinematics facilitate odor sampling by the spiny lobster, Panulirus argus. J Exp Biol 211(17):2849

    Article  PubMed  Google Scholar 

  • Schmitt BC, Ache BW (1979) Olfaction: responses of a decapod crustacean are enhanced by flicking. Science 205:204–206

    Article  PubMed  CAS  Google Scholar 

  • Schuech R, Stacey MT, Barad MF, Koehl MAR (2012) Numerical simulations of odorant detection by biologically inspired sensor arrays. Bioinspir Biomim 7(1):16001

    Article  CAS  Google Scholar 

  • Stacey MT, Mead KS, Koehl MAR (2002) Molecule capture by olfactory antennules: mantis shrimp. J Math Biol 44(1):1–30

    Article  PubMed  Google Scholar 

  • Su CY, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells and circuits. Cell 139:45–59

    Article  PubMed  CAS  Google Scholar 

  • Vickers NJ (2006) Winging it: moth flight behavior and responses of olfactory neurons are shaped by pheromone plume dynamics. Chem Senses 31:155–166

    Article  PubMed  Google Scholar 

  • Webster DR, Weissburg MJ (2001) Chemosensory guidance cues in a turbulent chemical odor plume. Limnol Oceanogr 46:1034–1047

    Article  CAS  Google Scholar 

  • Webster DR, Weissburg MJ (2009) The hydrodynamics of chemical cues among aquatic organisms. Annu Rev Fluid Mech 41:73–90

    Article  Google Scholar 

  • Weissburg MJ, Zimmer-Faust RK (1993) Life and death in moving fluids: hydrodynamic effects on chemosensory-mediated predation. Ecology 74:1428–1443

    Article  Google Scholar 

  • Weissburg MJ, Ferner MC, Pisut DP, Smee DL (2002) Ecological consequences of chemically mediated prey perception. J Chem Ecol 28:1953–1970

    Article  PubMed  CAS  Google Scholar 

  • Wilson RI (2008) Neural and behavioral mechanisms of olfactory perception. Curr Opin Neurobiol 18:408–412

    Article  PubMed  CAS  Google Scholar 

  • Zettler E, Atema J (1999) Chemoreceptor cells as concentration slope detectors: preliminary evidence from the lobster nose. Biol Bull 197:252–253

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a National Science Foundation grant NSF-CBET-0933034. We thank two anonymous reviewers for their helpful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapnil Pravin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pravin, S., Mellon, D. & Reidenbach, M.A. Micro-scale fluid and odorant transport to antennules of the crayfish, Procambarus clarkii . J Comp Physiol A 198, 669–681 (2012). https://doi.org/10.1007/s00359-012-0738-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0738-x

Keywords

Navigation