Skip to main content
Log in

Ultraviolet visual sensitivity in three avian lineages: paleognaths, parrots, and passerines

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

An Erratum to this article was published on 15 September 2012

Abstract

Ultraviolet (UV) light-transmitted signals play a major role in avian foraging and communication, subserving functional roles in feeding, mate choice, egg recognition, and nestling discrimination. Sequencing functionally relevant regions of the short wavelength sensitive type 1 (SWS1) opsin gene that is responsible for modulating the extent of SWS1 UV sensitivity in birds allows predictions to be made about the visual system’s UV sensitivity in species where direct physiological or behavioral measures would be impractical or unethical. Here, we present SWS1 segment sequence data from representative species of three avian lineages for which visually based cues for foraging and communication have been investigated to varying extents. We also present a preliminary phylogenetic analysis and ancestral character state reconstructions of key spectral tuning sites along the SWS1 opsin based on our sequence data. The results suggest ubiquitous ultraviolet SWS1 sensitivity (UVS) in both paleognaths, including extinct moa (Emeidae), and parrots, including the nocturnal and flightless kakapo (Strigops habroptilus), and in most, but not all, songbird (oscine) lineages, and confirmed violet sensitivity (VS) in two suboscine families. Passerine hosts of avian brood parasites were included both UVS and VS taxa, but sensitivity did not co-vary with egg rejection behaviors. The results should stimulate future research into the functional parallels between the roles of visual signals and the genetic basis of visual sensitivity in birds and other taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aidala Z, Hauber ME (2010) Avian egg coloration and visual sensory ecology. Nat Educ Knowl 1:4

    Google Scholar 

  • Andersson S, Örnborg J, Andersson M (1998) Ultraviolet sexual dimorphism and assortative mating in blue tits. Proc R Soc Lond B 265:445–450

    Article  Google Scholar 

  • Arnold KE, Owens IPF, Marshall NJ (2002) Fluorescent signaling in parrots. Science 295:92

    Article  PubMed  CAS  Google Scholar 

  • Ashwell KWS, Scofield RP (2008) Big birds and their brains: paleoneurology of the New Zealand moa. Brain Behav Evol 71:151–166

    Article  PubMed  CAS  Google Scholar 

  • Avilés JM, Soler JJ, Pérez-Contreras T (2006) Dark nests and egg colour in birds: a possible functional role of ultraviolet reflectance in egg detectability. Proc R Soc Lond B 273:2821–2829

    Article  Google Scholar 

  • Bennett ATD, Cuthill IC (1994) Ultraviolet vision in birds: what is its function? Vision Res 34:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Bennett ATD, Cuthill IC, Partridge JC, Maier EJ (1996) Ultraviolet vision and mate choice in zebra finches. Nature 380:433–435

    Article  CAS  Google Scholar 

  • Bennett ATD, Cuthill IC, Partridge JC, Lunau K (1997) Ultraviolet plumage colors predict mate preferences in starlings. Proc Natl Acad Sci USA 94:8618–8621

    Article  PubMed  CAS  Google Scholar 

  • Berg ML, Bennett ATD (2010) The evolution of plumage colouration in parrots: a review. Emu 110:10–20

    Article  Google Scholar 

  • Brennan TLR (2010) Clutch predation in great tinamous Tinamus major and implications for the evolution of egg color. J Avian Biol 41:419–426

    Article  Google Scholar 

  • Briskie JV (2003) Frequency of egg rejection by potential hosts of the New Zealand cuckoos. Condor 105:719–727

    Article  Google Scholar 

  • Burrows CJ (1989) Moa browsing: evidence from the pyramid valley mire. NZ J Ecol 12:51–56

    Google Scholar 

  • Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM (2007) The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Mol Biol Evol 24:1834–1852

    Article  Google Scholar 

  • Carvalho LS, Knott B, Berg ML, Bennett ATD, Hunt DM (2011) Ultraviolet-sensitive vision in long-lived birds. Proc R Soc Lond B 278:107–114

    Article  CAS  Google Scholar 

  • Cherry MI, Bennett ATD (2001) Egg colour matching in an African cuckoo, as revealed by ultraviolet-visible reflectance spectrophotometry. Proc R Soc Lond B 268:565–571

    Article  CAS  Google Scholar 

  • Corfield JR, Wild JM, Hauber ME, Parsons S, Kubke MF (2008) Evolution of brain size in the paleognath lineage, with an emphasis on New Zealand ratites. Brain Behav Evol 71:87–99

    Article  PubMed  Google Scholar 

  • Corfield JR, Gsell AC, Brunton D, Heesy CP, Hall MI, Acosta ML, Iwaniuk AN (2011) Anatomical specializations for nocturnality in a critically endangered parrot, the kakapo (Strigops habroptilus). PLoS ONE 6:e22945

    Article  PubMed  CAS  Google Scholar 

  • Cuthill IC (2006) Color perception. In: Hill GE, McGraw KJ (eds) Bird coloration. Harvard University Press, Cambridge

    Google Scholar 

  • Davies SJJF (2002) Ratites and tinamous. Oxford University Press, New York, p 310

    Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.1. Available from http://www.geneious.com

  • Fadzly N, Jack C, Schaefer HM, Burns KC (2009) Ontogenetic colour changes in an insular tree species: signaling to extinct browsing birds? New Phytol 184:495–501

    Article  PubMed  Google Scholar 

  • Gill BJ (2010) Checklist of the birds of New Zealand, Norfolk and Macquarie Islands, and the Ross Dependency, Antarctica. Te Papa Press, Wellington

    Google Scholar 

  • Goth A, Evans S (2004) Social responses without early experience: Australian brush-turkey chicks use specific cues to aggregate with conspecifics. J Exp Biol 207:2199–2208

    Article  PubMed  Google Scholar 

  • Groth JG, Barrowclough GF (1999) Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phyl Evol 12:115–123

    Article  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hackett SJ et al (2008) A phylogenetic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hall MI, Ross CF (2007) Eye shape and activity pattern in birds. J Zool 271:437–444

    Article  Google Scholar 

  • Hart NS (2001) The visual ecology of avian photoreceptors. Prog Retin Eye Res 20:675–703

    Article  PubMed  CAS  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC (1998) Visual pigments, oil droplets and cone photoreceptor distribution in the European starling (Sturnus vulgaris). J Exp Biol 201:1433–1446

    PubMed  Google Scholar 

  • Hauber ME, Sherman PW (2001) Self-referent phenotype matching: theoretical considerations and empirical evidence. Trends Neurosci 24:606–616

    Article  Google Scholar 

  • Hauber ME, Sherman PW, Paprika D (2000) Self-referent phenotype matching in a brood parasite: the armpit effect in brown-headed cowbirds (Molothrus ater). Anim Cog 3:113–117

    Article  Google Scholar 

  • Hauber ME, Russo SA, Sherman PW (2001) A password for species recognition in a brood-parasitic bird. Proc R Soc Lond B 268:1041–1048

    Article  CAS  Google Scholar 

  • Hausman F, Arnold KE, Marshall NJ, Owens IPF (2003) Ultraviolet signals in birds are special. Proc R Soc Lond B 270:61–67

    Article  Google Scholar 

  • Hill GE, McGraw KJ (2006) Bird coloration. Mechanisms and measurements, vol 1. Harvard University Press, Cambridge

    Google Scholar 

  • Honkavaara J, Koivula M, Korpimäki E, Siitari H, Vittala J (2002) Ultraviolet vision and foraging in terrestrial vertebrates. Oikos 98:505–511

    Article  Google Scholar 

  • Honza M, Polačiková L, Procházka P (2007) Ultraviolet and green parts of the colour spectrum affect egg rejection in the song thrush (Turdus philomelos). Biol J Linn Soc 92:276–296

    Article  Google Scholar 

  • Horrocks M, D’Costa D, Wallace R, Gardner R, Kondo R (2004) Plant remains in coprolites: diet of a subalpine moa (Dinornithiformes) from southern New Zealand. Emu 104:149–156

    Article  Google Scholar 

  • Hubbard JK, Uy JAC, Hauber ME, Hoekstra HE, Safran RJ (2010) Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet 26:231–239

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Hunt DM, Wilkie SE, Bowmaker JK, Poopalasundaram S (2001) Vision in the ultraviolet. Cell Mol Life Sci 58:1583–1598

    Article  PubMed  CAS  Google Scholar 

  • Hunt S, Kilner RM, Langmore NE, Bennett ATD (2003) Conspicuous, ultraviolet-rich mouth colours in begging chicks. Proc R Soc Lond B 270:S25–S28

    Article  Google Scholar 

  • Hunt DM, Carvalho LS, Cowing JA, Davies WL (2009) Evolution and spectral tuning of visual pigments in birds and mammals. Phil Trans R Soc Lond B 364:2941–2955

    Article  CAS  Google Scholar 

  • Huynen L, Gill BJ, Millar CD, Lambert DM (2010) Ancient DNA reveals extreme egg morphology and nesting behavior in New Zealand’s extinct moa. Proc Natl Acad Sci USA 107:16201–16207

    Article  PubMed  CAS  Google Scholar 

  • Igic B, Greenwood DR, Palmer DJ, Cassey P, Gill BJ, Grim T, Brennan PLR, Basset SM, Battley PF, Hauber ME (2010a) Detecting pigments from colourful eggshells of extinct birds. Chemoecol 20:43–48

    Article  Google Scholar 

  • Igic B, Leuschner N, Parker KA, Ismar SMH, Gill BJ, Lovegrove TG, Millar CD, Hauber ME (2010b) Size dimorphism and avian-perceived sexual dichromatism in a New Zealand endemic bird, the whitehead Mohoua albicilla. J Morphol 27:697–704

    Google Scholar 

  • Jourdie V, Moureau B, Bennett ATD, Heeb P (2004) Ultraviolet reflectance by the skin of nestlings. Nature 431:262

    Article  PubMed  CAS  Google Scholar 

  • Kilner RM (2006) The evolution of egg colour and patterning in birds. Biol Rev 81:383–406

    Article  PubMed  CAS  Google Scholar 

  • López-Rull I, Celis P, Gil D (2007) Egg colour covaries with female expression of a male ornament in the spotless starling (Sturnus unicolor). Ethology 113:926–933

    Article  Google Scholar 

  • López-Rull I, Miksik I, Gil D (2008) Egg pigmentation reflects female and egg quality in the spotless starling Sturnus unicolor. Behav Ecol Sociobiol 62:1877–1884

    Article  Google Scholar 

  • Machovsky Capuska GE, Huynen L, Lambert D, Raubenheimer D (2011) UVS vision is rare in seabirds. Vision Res 51:1333–1337

    Article  PubMed  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis, version 2.75. http://mesquiteproject.org

  • Martin GR, Wilson K, Wild JM, Parsons S, Kubke MF, Corfield J (2007) Kiwi forego vision in the guidance of their nocturnal activities. PLoS ONE 2:e198

    Article  PubMed  Google Scholar 

  • McLean IG, Waas JR (1987) Do cuckoo chicks mimic the begging calls of their hosts? Anim Behav 35:1896–1907

    Article  Google Scholar 

  • Moreno J, Morales J, Lobato E, Merino S, Tomás G, Martínez-de la Puente J (2005) Evidence for the signaling function of egg color in the pied flycatcher Ficedule hypoleuca. Behav Ecol 16:931–937

    Article  Google Scholar 

  • Mullen P, Pohland G (2008) Studies on UV reflection in feathers of some 1000 bird species: are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones? Ibis 150:59–68

    Article  Google Scholar 

  • Nyári Á, Benz B, Jønsson K, Fjeldså J, Moyle RG (2009) Phylogenetic relationships of fantails (Aves: Rhipiduridae). Zool Scr 38:553–561

    Google Scholar 

  • Ödeen A, Håstad O (2003) Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol 20:855–861

    Article  PubMed  Google Scholar 

  • Ödeen A, Håstad O, Alström P (2010) Evolution of ultraviolet vision in shorebirds (Charadiiformes). Biol Lett 6:370–374

    Article  PubMed  Google Scholar 

  • Ödeen A, Håstad O, Alström P (2011) Evolution of ultraviolet vision in the largest avian radiation—the passerines. BMC Evol Biol 11:313

    Article  PubMed  Google Scholar 

  • Pearn SM, Bennett ATD, Cuthill IC (2001) Ultraviolet vision, fluorescence and mate choice in a parrot, the budgerigar Melopsittacus undulatus. Proc R Soc Lond B 268:2273–2279

    Article  CAS  Google Scholar 

  • Peer BD, Sealy SG (2004) Correlates of egg rejection in hosts of the brown-headed cowbird. Condor 106:580–589

    Article  Google Scholar 

  • Phillips MJ, Gibb GC, Crimp EA, Penny D (2010) Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Syst Biol 59:90–107

    Article  PubMed  Google Scholar 

  • Polačiková L, Honza M, Procházka P, Toper J, Stokke BG (2007) Colour characteristics of the blunt egg pole: cues for recognition of parasitic eggs as revealed by reflectance spectrophotometry. Anim Behav 74:419–427

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Schaefer HM, Schaefer V, Vorobyev M (2007) Are fruit colors adapted to consumer vision and birds equally efficient in detecting colorful signals? Am Nat 169:S159–S169

    Article  PubMed  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analysis. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Shi Y, Radlwimmer FB, Yokoyama S (2001) Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc Natl Acad Sci USA 98:1173–11731

    Google Scholar 

  • Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinforma 11:7

    Article  Google Scholar 

  • Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, Brosius J, Kriegs JO, Schmitz J (2011) Mesozoic retroposons reveal parrots as the closest relatives of passerine birds. Nat Commun 2:443

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuc Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Underwood TJ, Sealy SG (2008) UV reflectance of eggs of brown-headed cowbirds (Molothrus ater) and accepter and rejecter hosts. J Ornithol 149:313–321

    Article  Google Scholar 

  • van Hazel I, Santini F, Müller J, Chang BSW (2006) Short-wavelength sensitive opsin (SWS1) as a new marker for vertebrate phylogenetics. BMC Evol Biol 6:97

    Article  PubMed  Google Scholar 

  • Werle E, Schneider C, Renner M, Volker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nuc Acids Res 22:4354–4355

    Article  CAS  Google Scholar 

  • Wilkie SE, Vissers PMAM, Das D, DeGrip WJ, Bowmaker JK, Hunt DM (1998) The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus). Biochem J 330:541–547

    PubMed  CAS  Google Scholar 

  • Wilkie SE, Robinson PR, Cronin TW, Poopalasundarum S, Bowmaker JK, Hunt DM (2000) Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. Biochem 39:7895–7901

    Article  CAS  Google Scholar 

  • Wood JR, Rawlence NJ, Rogers GM, Austin JJ, Worthy TH, Cooper A (2008) Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes). Quat Sci Rev 27:2593–2602

    Article  Google Scholar 

  • Wright MW, Bowmaker JK (2001) Retinal photoreceptors of paleognathous birds: the ostrich (Struthio camelus) and rhea (Rhea americana). Vis Res 41:1–12

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Shi Y (2000) Genetics and evolution of ultraviolet vision in vertebrates. FEBS Lett 486:167–172

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Radlwimmer FB, Blow NS (2000) Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc Natl Acad Sci USA 97:7366–7371

    Google Scholar 

Download references

Acknowledgments

Major funding was provided by the Human Frontier Science Program to MEH and the NSF to ZA. We would like to thank Irby J. Lovette and the Cornell University Laboratory of Ornithology for providing our North American songbird samples from their frozen tissue collection (Melospiza melodia CUMV52030; Agelaius phoeniceus CUMV52398; Molothrus ater CUMV50922; Quiscalus quiscula CUMV50813; Dumetella carolinensis CUMV50532; Mimus polyglottos CUMV51469; Setophaga petechia CUMV51062; Passer domesticus CUMV50719; Hylocichla mustelina CUMV51591; Turdus migratorius CUMV44366; Sayornis phoebe CUMV52315; Tyrannus tyrannus CUMV50890). For the parrot DNA/tissue samples our thanks go to Siwo de Kloet (Avian Biotech, Florida, USA; Agapornis roseicollis, Eclectus roratus, Psittacula derbiana, Platycercus elegans, Eolophus roseicapillus), Gail Sutton, Natureland Zoo (Nelson, New Zealand; Psittacula krameri manillensis, Nymphicus hollandicus, Cacatua galerita), the New Zealand Department of Conservation (Nestor meridionalis, Nestor notabilis, Strigops habroptilus), and Christine Mander (New Zealand; Platycercus eximius). We would like to thank Joy Halverston (Zoogen, CA) for providing our extant ratite samples (Casuarius casuarius, Dromaius novaehollandiae, Struthio camelus, and Rhea americana). The Yale Peabody Museum of Natural History (YPM) kindly provided our tinamou (Tinamidae) (Crypturellus undulatus YPM 136994, Nothura boraquira YPM 136976, Nothoprocta ornata YPM 136964, Nothoprocta pentlandii YPM 136997, Rhynchotus rufescens YPM 100922), Manacus manacus YPM 137115 and second Casuarius casuarius (YPM 86855) samples. Finally, extinct moa samples Pachyornis elephantopus (CM SB301), Emeus crassus (CM Av13775), Euryapteryx gravis (OM Av9821), Euryapteryx curtus (AIM B6595ii), and Pachyornis geranoides (W336) were kindly provided by Canterbury Museum, Otago Museum, Auckland Museum, and Whanganui Museum, respectively. We would also like to thank two anonymous reviewers for their helpful comments on an earlier version of the manuscript. Samples were collected from live specimens following local animal ethics rules and regulations in New Zealand and the University of Auckland and in the USA and Hunter College of the City University of New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary Aidala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (FASTA 35.7 kb)

Supplementary material 2 (FASTA 12.7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aidala, Z., Huynen, L., Brennan, P.L.R. et al. Ultraviolet visual sensitivity in three avian lineages: paleognaths, parrots, and passerines. J Comp Physiol A 198, 495–510 (2012). https://doi.org/10.1007/s00359-012-0724-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0724-3

Keywords

Navigation