Skip to main content
Log in

Effect of temperature on spinal cord regeneration in the weakly electric fish, Apteronotus leptorhynchus

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Temperature manipulation has been shown to significantly affect recovery after spinal cord injury in various mammalian model systems. Little has been known thus far about the impact of temperature on structural and functional recovery after central nervous system lesions in regeneration-competent, poikilotherm organisms. In the present study, we addressed this aspect using an established model of adult spinal cord regeneration, the weakly electric teleost fish Apteronotus leptorhynchus. We observed an overall beneficial effect of increased temperature on both structural and behavioral recovery after amputation of the caudal spinal cord. Fish kept at 30°C recovered the amplitude of the electric organ discharge at more than twice the rate observed in fish kept at 22°C, within the first 20 days post-injury. This improved recovery was supported by increased cell proliferation and decreased apoptosis levels in fish kept at 30°C. The high temperature appeared to have a direct inhibitory effect on apoptosis and to lead to a compression of the duration of the wave of post-lesion apoptosis. The latter effect was presumably induced through the acceleration of the metabolic rate, a phenomenon also supported by the observation that re-growth of the tail was significantly increased in fish kept at 30°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CNS:

Central nervous system

DAPI:

4′,6-Diamidino-2-phenylindoledihydrochloride

EOD:

Electric organ discharge

GFAP:

Glial fibrillary acidic protein

PBS:

Phosphate-buffered saline

RT:

Room temperature

SD:

Standard deviation

TBS:

Tris-buffered saline

References

  • Anderson MJ, Swanson KA, Waxman SG, Eng LF (1984) Glial fibrillary acidic protein in regenerating teleost spinal cord. J Histochem Cytochem 32:1099–1106

    PubMed  CAS  Google Scholar 

  • Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes—integrating cell survival and death. J Biosci 32:595–610

    Article  PubMed  CAS  Google Scholar 

  • Becker CG, Becker T (2007) Zebrafish as a model system for successful spinal cord regeneration. In: Becker CG, Becker T (eds) Model organisms in spinal cord regeneration. Wiley-VCH, Weinheim, pp 289–319

    Google Scholar 

  • Becker CG, Becker T (2008) Adult zebrafish as a model for successful central nervous system regeneration. Restor Neurol Neurosci 26:71–80

    PubMed  Google Scholar 

  • Bennett MVL (1971) Electric organs. In: Randall DJ (ed) Fish physiology: sensory systems and electric organs. Academic Press, New York, pp 347–489

    Chapter  Google Scholar 

  • Blundon JA, Sheller RA, Moehlenbruck JW, Bittner GD (1990) Effect of temperature on long-term survival of anucleate giant axons in crayfish and goldfish. J Comp Neurol 297:377–391

    Article  PubMed  CAS  Google Scholar 

  • Bramlett HM, Dietrich WD (2007) Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res 161:125–141

    Article  PubMed  Google Scholar 

  • Chatzipanteli K, Yanagawa Y, Marcillo AE, Kraydieh S, Yezierski RP, Dietrich WD (2000) Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats. J Neurotrauma 17:321–332

    Article  PubMed  CAS  Google Scholar 

  • Chong SL, Mou DG, Ali AM, Lim SH, Tey BT (2008) Cell growth, cell-cycle progress, and antibody production in hybridoma cells cultivated under mild hypothermic conditions. Hybridoma (Larchmt) 27:107–111

    Article  CAS  Google Scholar 

  • Clint SC, Zupanc GKH (2001) Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: guidance of migrating young cells by radial glia. Dev Brain Res 130:15–23

    Article  CAS  Google Scholar 

  • Clint SC, Zupanc GKH (2002) Up-regulation of vimentin expression during regeneration in the adult fish brain. NeuroReport 13:317–320

    Article  PubMed  CAS  Google Scholar 

  • Cohen AH, Kiemel T, Pate V, Blinder J, Guan L (1999) Temperature can alter the function outcome of spinal cord regeneration in larval lampreys. Neuroscience 90:957–965

    Article  PubMed  CAS  Google Scholar 

  • Cohen AH, Abdelnabi M, Guan L, Ottinger MA, Chakrabarti L (2005) Changes in distribution of serotonin induced by spinal injury in larval lampreys: evidence from immunohistochemistry and HPLC. J Neurotrauma 22:172–188

    Article  PubMed  Google Scholar 

  • Dietrich WD, Bramlett HM (2007) Hyperthermia and central nervous system injury. Prog Brain Res 162:201–217

    Article  PubMed  CAS  Google Scholar 

  • Dietrich WD, Atkins CM, Bramlett HM (2009) Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J Neurotrauma 26:301–312

    Article  PubMed  Google Scholar 

  • Dimar JR 2nd, Shields CB, Zhang YP, Burke DA, Raque GH, Glassman SD (2000) The role of directly applied hypothermia in spinal cord injury. Spine (Phila Pa 1976) 25:2294–2302

    Google Scholar 

  • Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294–301

    Article  PubMed  CAS  Google Scholar 

  • Giffard RG, Han RQ, Emery JF, Duan M, Pittet JF (2008) Regulation of apoptotic and inflammatory cell signaling in cerebral ischemia: the complex roles of heat shock protein 70. Anesthesiology 109:339–348

    Article  PubMed  CAS  Google Scholar 

  • Hayashi N (2009) Management of pitfalls for the successful clinical use of hypothermia treatment. J Neurotrauma 26:445–453

    Article  PubMed  Google Scholar 

  • Inamasu J, Nakamura Y, Ichikizaki K (2003) Induced hypothermia in experimental traumatic spinal cord injury: an update. J Neurol Sci 209:55–60

    Article  PubMed  Google Scholar 

  • Johansson BB (2007) Regeneration and plasticity in the brain and spinal cord. J Cereb Blood Flow Metab 27:1417–1430

    Article  PubMed  CAS  Google Scholar 

  • Kondo H, Watabe S (2004) Temperature-dependent enhancement of cell proliferation and mRNA expression for type I collagen and HSP70 in primary cultured goldfish cells. Comp Biochem Physiol A Mol Integr Physiol 138:221–228

    Article  PubMed  CAS  Google Scholar 

  • MacLellan CL, Clark DL, Silasi G, Colbourne F (2009) Use of prolonged hypothermia to treat ischemic and hemorrhagic stroke. J Neurotrauma 26:313–323

    Article  PubMed  Google Scholar 

  • Marchant RJ, Al-Fageeh MB, Underhill MF, Racher AJ, Smales CM (2008) Metabolic rates, growth phase, and mRNA levels influence cell-specific antibody production levels from in vitro-cultured mammalian cells at sub-physiological temperatures. Mol Biotechnol 39:69–77

    Article  PubMed  CAS  Google Scholar 

  • Marion D, Bullock MR (2009) Current and future role of therapeutic hypothermia. J Neurotrauma 26:455–467

    Article  PubMed  Google Scholar 

  • Martinez-Arizala A, Green BA (1992) Hypothermia in spinal cord injury. J Neurotrauma 9(Suppl 2):S497–S505

    PubMed  Google Scholar 

  • Park H, Cho JA, Kim SK, Kim JH, Lee SH (2008) Hyperthermia on mesenchymal stem cells (MSCs) can sensitize tumor cells to undergo cell death. Int J Hyperthermia 24:638–648

    Article  PubMed  CAS  Google Scholar 

  • Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15:415–436

    Article  PubMed  Google Scholar 

  • Radmilovich M, Fernandez A, Trujillo-Cenoz O (2003) Environment temperature affects cell proliferation in the spinal cord and brain of juvenile turtles. J Exp Biol 206:3085–3093

    Article  PubMed  Google Scholar 

  • Rajendran RS, Zupanc MM, Lösche A, Westra J, Chun J, Zupanc GKH (2007) Numerical chromosome variation and mitotic segregation defects in the adult brain of teleost fish. Dev Neurobiol 67:1334–1347

    Article  PubMed  Google Scholar 

  • Reimer MM, Kuscha V, Wyatt C, Sörensen I, Frank RE, Knüwer M, Becker T, Becker CG (2009) Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish. J Neurosci 29:15073–15082

    Article  PubMed  CAS  Google Scholar 

  • Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10:235–241

    Article  PubMed  CAS  Google Scholar 

  • Shi R, Pryor JD (2000) Temperature dependence of membrane sealing following transection in mammalian spinal cord axons. Neuroscience 98:157–166

    Article  PubMed  CAS  Google Scholar 

  • Sîrbulescu RF, Ilieş I, Zupanc GKH (2009) Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish, Apteronotus leptorhynchus. J Comp Physiol A 195:699–714

    Article  Google Scholar 

  • Stuermer CAO, Bastmeyer M, Bähr M, Strobel G, Paschke K (1992) Trying to understand axonal regeneration in the CNS of fish. J Neurobiol 23:537–550

    Article  PubMed  CAS  Google Scholar 

  • Velasco A, Cid E, Ciudad J, Orfao A, Aijon J, Lara JM (2001) Temperature induces variations in the retinal cell proliferation rate in a cyprinid. Brain Res 913:190–194

    Article  PubMed  CAS  Google Scholar 

  • Wei EP, Hamm RJ, Baranova AI, Povlishock JT (2009) The long-term microvascular and behavioral consequences of experimental traumatic brain injury after hypothermic intervention. J Neurotrauma 26:527–537

    Article  PubMed  CAS  Google Scholar 

  • Westergren H, Farooque M, Olsson Y, Holtz A (2000) Motor function changes in the rat following severe spinal cord injury. Does treatment with moderate systemic hypothermia improve functional outcome? Acta Neurochir (Wien) 142:567–573

    Article  CAS  Google Scholar 

  • Yu WR, Westergren H, Farooque M, Holtz A, Olsson Y (1999) Systemic hypothermia following compression injury of rat spinal cord: reduction of plasma protein extravasation demonstrated by immunohistochemistry. Acta Neuropathol 98:15–21

    Article  PubMed  CAS  Google Scholar 

  • Yu CG, Jimenez O, Marcillo AE, Weider B, Bangerter K, Dietrich WD, Castro S, Yezierski RP (2000) Beneficial effects of modest systemic hypothermia on locomotor function and histopathological damage following contusion-induced spinal cord injury in rats. J Neurosurg 93:85–93

    PubMed  CAS  Google Scholar 

  • Zupanc GKH (2001) A comparative approach towards the understanding of adult neurogenesis. Brain Behav Evol 58:246–249

    Article  PubMed  CAS  Google Scholar 

  • Zupanc GKH (2008) Adult neurogenesis and neuronal regeneration in the brain of teleost fish. J Physiol Paris 102:357–373

    Article  PubMed  Google Scholar 

  • Zupanc GKH (2009) Towards brain repair: insights from teleost fish. Semin Cell Dev Biol 20:683–690

    Article  PubMed  Google Scholar 

  • Zupanc GKH, Hinsch K, Gage FH (2005) Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J Comp Neurol 488:290–319

    Article  PubMed  Google Scholar 

  • Zupanc GKH, Sîrbulescu RF, Nichols A, Ilies I (2006a) Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus. J Comp Physiol A 192:159–173

    Article  CAS  Google Scholar 

  • Zupanc MM, Wellbrock UM, Zupanc GKH (2006b) Proteome analysis identifies novel protein candidates involved in regeneration of the cerebellum of teleost fish. Proteomics 6:677–696

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study received financial support from the Ernst A.-C. Lange-Stiftung and from Jacobs University Bremen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther K. H. Zupanc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sîrbulescu, R.F., Zupanc, G.K.H. Effect of temperature on spinal cord regeneration in the weakly electric fish, Apteronotus leptorhynchus . J Comp Physiol A 196, 359–368 (2010). https://doi.org/10.1007/s00359-010-0521-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0521-9

Keywords

Navigation