1.

Bergmann, B. and Gerhard H., “Improvements of general multiple test procedures for redundant systems of hypotheses,” *Multiple Hypothesenprfung/Multiple Hypotheses Testing*, Springer Berlin Heidelberg, pp. 100–115, 1988.

2.

Chen, W. and Yuan, Y. and Zhang, L., “Scalable influence maximization in social networks under the linear threshold model,” in *Proc. of 2010 IEEE 10th International Conference on Data Mining*, IEEE Computer Society, pp. 88–97, 2010.

3.

Choudhury, M. and Sundaram, H. and John, A. and Seligmann, D.D., “Social Synchrony: Predicting Mimicry of User Actions in Online Social Media,” in *Proc. Int. Conf. on Computational Science and Engineering*, pp. 151–158, 2009.

4.

Cliffor P., Sudbury A.: “A model for spatial conflict,”. Biometrika

**60**(3), 581–588 (1973)

MathSciNetCrossRefGoogle Scholar5.

Csardi, G. and Nepusz, T., “The igraph software package for complex network research,” *InterJournal, vol. Complex Systems*, 2006.

6.

Even-Dar, E. and Shapira, A., “A note on maximizing the spread of influence in social networks,” *Network* (Deng, X. and Graham, F. eds.), *111, 4, ch. 27*, pp. 281–286, 2007.

7.

Freeman L.C.: “Set of Measures of Centrality Based on Betweenness,”. Sociometry

**40**(1), 35–41 (1977)

CrossRefGoogle Scholar8.

Friedman M.: “The use of ranks to avoid the assumption of normality implicit in the analysis of variance,”. Journal of the American Statistical Association

**32**(200), 675–701 (1937)

CrossRefGoogle Scholar9.

Goldenberg J., Libai B., Muller E.: “Talk of the network: A complex systems look at the underlying process of word-of-mouth,”. Marketing letters

**12**(3), 211–223 (2001)

CrossRefGoogle Scholar10.

Gomez-Rodriguez, M. and Leskovec, J. and Krause, A., “Inferring Networks of Diffusion and Influence,” in *Proc. of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining KDD 10, 5, 4*, IEEE Computer Society, pp. 1019–1028, 2010.

11.

Goyal A., Bonchi F., Lakshmanan L.V.S.: “A data-based approach to social influence maximization,”. In Proc. of the VLDB Endowment

**5**(1), 73–84 (2011)

CrossRefGoogle Scholar12.

Goyal A., Bonchi F., Lakshmanan L.V.S., Venkatasubramanian S.: “On minimizing budget and time in influence propagation over social networks,”. Social Network Analysis and Mining

**3**(2), 179–192 (2013)

CrossRefGoogle Scholar13.

Goyal, A. and Lu, W. and Lakshmanan, L.V.S. “SIMPATH: An Efficient Algorithm for Influence Maximization under the Linear Threshold Model,” in *Proc. of 11th IEEE International Conference on Data Mining*, IEEE Computer Society, pp. 211–220, 2011.

14.

Granovetter M.: “Threshold Models of Collective Behavior,”. American Journal of Sociology

**83**(6), 1420–1443 (1978)

CrossRefGoogle Scholar15.

Holm, S., “A simple sequentially rejective multiple test procedure,” *Scandinavian journal of statistics*, pp. 65–70, 1969.

16.

Holme, P. and Saramäki, J., “Temporal networks,” *Physics reports* (Deng, X. and Graham, F. eds.), *519, 3*, pp. 97–125, 2012.

17.

Jankowski, J. and Michalski, R. and Kazienko, P., “Compensatory Seeding in Networks with Varying Availability of Nodes,” in *Proc. of 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining ASONAM 2013*, pp. 1242–1249, 2013.

18.

Karimi F., Holme P.: “Threshold model of cascades in empirical temporal networks,”. Physica A: Statistical Mechanics and its Applications

**392**, 3476–3483 (2013)

CrossRefGoogle Scholar19.

Karsai, M. and Kivelä, M. and Pan, R.K. and Kaski, K. and Kertész, J. and Barabási, A-L. and Saramäki, J., “Small but slow world: How network topology and burstiness slow down spreading,” *Physical Review E, 83, 2*, 2011.

20.

Kazienko P., Kajdanowicz T.: “Label-dependent node classification in the network,”. Neurocomputing

**75**, 199–209 (2012)

CrossRefGoogle Scholar21.

Kempe, D. and Kleinberg, J. and Tardos, E., “Maximizing the spread of influence through a social network,” in *Proc. of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 2003*, ACM Press, pp. 137–146, 2003.

22.

Klimt, B. and Yang, Y., “The enron corpus: A new dataset for email classification research,” in *Proc. of ECML 2004 - European Conference on Machine learning*, Springer, pp. 217–226, 2004.

23.

Kossinets, G. and Watts, D.J., “Empirical analysis of an evolving social network,” *Science* (Deng, X. and Graham, F. eds.), *311, 5757*, pp. 88–90, 2006.

24.

Król, D., “On Modelling Social Propagation Phenomenon,” *LNCS, 8398*, Springer Verlag, pp. 227–236, 2014.

25.

Liben-Nowell D., Kleinberg J.: “The link prediction problem for social networks,”. Journal of the American society for information science and technology

**58**(7), 1019–1031 (2007)

CrossRefGoogle Scholar26.

Masuda, N. and Holme, P., “Predicting and controlling infectious disease epidemics using temporal networks,” *F1000prime reports, 5*, 2013.

27.

Mathioudakis, M. and Bonchi, F. and Castillo, C. and Gionis, A. and Ukkonen, A., “Sparsification of influence networks,” in *Proc. of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, ACM Press, pp. 529–537, 2011.

28.

Michalski, R. and Bródka, P. and Kazienko, P. and Juszczyszyn, K., “Quantifying social network dynamics,” *in Proc. of the 4th Conference on Computational Aspects of Social Networks (CASoN)*, IEEE Computer Society, pp. 69–74, 2012.

29.

Michalski, R. and Kazienko, P. and Jankowski, J., “Convince a Dozen More and Succeed–The Influence in Multi-layered Social Networks,” *in Proc. of the International Conference on Signal-Image Technology & Internet-Based Systems (SITIS 2013)*, IEEE Computer Society, pp. 499–505, 2013.

30.

Michalski R., Palus S., Kazienko P.: “Matching Organizational Structure and Social Network Extracted from Email Communication,”. Lecture Notes in Business Information Processing

**87**, 197–206 (2011)

CrossRefGoogle Scholar31.

Moon, J.W. and Moser, L., “On cliques in graphs,” *Israel journal of Mathematics*, pp. 23–28, 1965.

32.

Nemenyi, P., “Distribution-free multiple comparisons,” *Dissemination at Princeton University*, 1963.

33.

Opsahl T., Panzarasa P.: “Clustering in Weighted Networks,”. Social Networks

**31**(2), 155–163 (2009)

CrossRefGoogle Scholar34.

Palla, G, and Barabsi, A-L. and Vicsek, T., “Quantifying social group evolution,” *Nature*, 2007.

35.

Prell, C., *Social network analysis: History, theory and methodology*, Sage Publications Limited, 2011.

36.

R Development Core Team, *R: A Language and Environment for Statistical Computing*, R Foundation for Statistical Computing, 2011.

37.

Rogers, E.M., *Diffusion of innovations*, Simon and Schuster, 2010.

38.

Saito, K. and Nakano, R. and Kimura, M. and Lovrek, I. and Howlett, R. and Jain, L., “Prediction of Information Diffusion Probabilities for Independent Cascade Model,” in *KnowledgeBased Intelligent Information and Engineering Systems* (Lovrek, I. and Howlett, R.J. and Jain, L. eds.), Springer Verlag, pp. 67–75, 2008.

39.

Shaffer : “Multiple hypothesis testing,”. Annual review of psychology

**46**(1), 561–584 (1995)

CrossRefGoogle Scholar40.

Spira P.M., Pan A.: “On finding and updating spanning trees and shortest paths,”. IAM Journal on Computing

**4**(3), 375–380 (1975)

MathSciNetMATHGoogle Scholar41.

Viswanath, B. and Mislove, A. and Cha, M. and Gummadi, K.P., “On the Evolution of User Interaction in Facebook,” in *Proc. Workshop on Online Social Networks*, Springer, pp. 37–42, 2009.