Skip to main content
Log in

Bouncing antibubbles

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The behavior of antibubbles bouncing on a gas–liquid interface is studied using a high-speed video camera. The dimensionless bounce time is found to be independent of the impacting velocity of the antibubbles over a wide range of velocities. Whether the drop bounces off the liquid surface or not is sensitive to the Weber number We, and the critical We is presented based on experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beilharz D, Guyon A, Li EQ et al (2015) Antibubbles and fine cylindrical sheets of air. J Fluid Mech 779:87–115

    Article  MathSciNet  Google Scholar 

  • Couder Y, Fort E, Gautier CH et al (2005) From bouncing to floating: noncoalescence of drops on a fluid bath. Phys Rev Lett 94(17):177801

    Article  Google Scholar 

  • Davis RH, Rager DA, Good BT (2002) Elastohydrodynamic rebound of spheres from coated surfaces. J Fluid Mech 468:107–119

    Article  MATH  Google Scholar 

  • Dorbolo S, Caps H, Vandewalle N (2003) Fluid instabilities in the birth and death of antibubbles. New J Phys 5(1):161

    Article  Google Scholar 

  • Dorbolo S, Reyssat E, Vandewalle N et al (2005) Aging of an antibubble. EPL (Europhys Lett) 69(6):966

    Article  Google Scholar 

  • Dorbolo S, Terwagne D, Delhalle R et al (2010) Antibubble lifetime: influence of the bulk viscosity and of the surface modulus of the mixture. Coll Surf A: Physicochem Eng Asp 365(1):43–45

    Article  Google Scholar 

  • Hughes W, Hughes AR (1932) Nature (London) 129:59

    Article  Google Scholar 

  • Jayaratne OW, Mason BJ (1964) The coalescence and bouncing of water drops at an air/water interface. Proc R Soc Lond A: Math Phys Eng Sci. 280(1383):545–565

    Article  Google Scholar 

  • Kim PG, Stone HA (2008) Dynamics of the formation of antibubbles. EPL (Europhys Lett) 83(5):54001

    Article  Google Scholar 

  • Kim PG, Vogel J (2006) Antibubbles: factors that affect their stability. Coll Surf A: Physicochem Eng Asp 289(1):237–244

    Google Scholar 

  • Kosior D, Zawala J, Malysa K (2014) Influence of N-octanol on the bubble impact velocity, bouncing and the three phase contact formation at hydrophobic solid surfaces. Coll Surf A: Physicochem Eng Asp 441:788–795

    Article  Google Scholar 

  • Legendre D, Daniel C, Guiraud P (2005) Experimental study of a drop bouncing on a wall in a liquid. Phys Fluids (1994–present) 17(9):097105

    Article  MATH  Google Scholar 

  • Malysa K, Krasowska M, Krzan M (2005) Influence of surface active substances on bubble motion and collision with various interfaces. Adv Coll Interface Sci 114:205–225

    Article  Google Scholar 

  • Richard D, Clanet C, Quéré D (2002) Surface phenomena: contact time of a bouncing drop. Nature 417(6891):811–811

    Article  Google Scholar 

  • Sanada T, Watanabe M, Fukano T (2005) Effects of viscosity on coalescence of a bubble upon impact with a free surface. Chem Eng Sci 60(19):5372–5384

    Article  Google Scholar 

  • Sato A, Shirota M, Sanada T et al (2011) Modeling of bouncing of a single clean bubble on a free surface. Phys Fluids (1994–present) 23(1):013307

    Article  Google Scholar 

  • Scheid B, Dorbolo S (2011) Antibubble dynamics: slipping or viscous interfaces? 20ème Congrès Français de Mécanique, 28 août/2 sept. 2011-25044 Besançon, France (FR)

  • Scheid B, Zawala J, Dorbolo S (2014) Gas dissolution in antibubble dynamics. Soft Matter 10(36):7096–7102

    Article  Google Scholar 

  • Silpe JE, McGrail DW (2013) Magnetic antibubbles: formation and control of magnetic macroemulsions for fluid transport applications. J Appl Phys 113(17):17B304

    Article  Google Scholar 

  • Sob’yanin DN (2015) Theory of the antibubble collapse. Phys Rev Lett 114(10):104501

    Article  Google Scholar 

  • Takagi S, Matsumoto Y (2011) Surfactant effects on bubble motion and bubbly flows. Annu Rev Fluid Mech 43:615–636

    Article  MATH  Google Scholar 

  • Weiss P (2004) Sci News 165(50):311–313

    Article  Google Scholar 

  • Zawala J, Malysa K (2011) Influence of the impact velocity and size of the film formed on bubble coalescence time at water surface. Langmuir 27(6):2250–2257

    Article  Google Scholar 

  • Zawala J, Dorbolo S, Terwagne D et al (2011) Bouncing bubble on a liquid/gas interface resting or vibrating. Soft Matter 7(14):6719–6726

    Article  Google Scholar 

  • Zenit R, Legendre D (2009) The coefficient of restitution for air bubbles colliding against solid walls in viscous liquids. Phys Fluids (1994–present) 21(8):083306

    Article  MATH  Google Scholar 

  • Zou J, Wang PF, Zhang TR et al (2011) Experimental study of a drop bouncing on a liquid surface. Phys Fluids 23(4):044101

    Article  MathSciNet  Google Scholar 

  • Zou J, Ji C, Yuan BG et al (2013) Collapse of an antibubble. Phys Rev E 87(6):061002

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation (Nos. 51475415 and 51405429), Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (No. LR15E050001) and the Postdoctoral Science Foundation of China (2015M581925).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Wang, W. & Ji, C. Bouncing antibubbles. Exp Fluids 57, 147 (2016). https://doi.org/10.1007/s00348-016-2229-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2229-2

Keywords

Navigation