Skip to main content
Log in

Characterizing a burst leading-edge vortex on a rotating flat plate wing

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Identifying, characterizing, and tracking incoherent vortices in highly separated flows is of interest for the development of new low-order models for unsteady lift prediction. The current work examines several methods to identify vortex burst and characterize a burst leading-edge vortex. Time-resolved stereoscopic PIV was performed on a rotating flat plate wing at Re = 2500. The burst process was found to occur at mid-span and is characterized by axial flow reversal, the entrainment of opposite-sign vorticity, and a rapid expansion of vortex size. A POD analysis revealed that variations in certain mode coefficients are indicative of the flow state changes characteristics of burst. During burst, the leading-edge vortex evolves to a region of inhomogeneous vorticity distributed over a large area. Several methods of defining the vortex size and circulation are evaluated and a combination of these can be used to characterize the leading-edge vortex both pre- and post-burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aubry N (1991) On the hidden beauty of the proper orthogonal decomposition. Theor Comput Fluid Dyn 2(5–6):339–352. doi:10.1007/BF00271473

    Article  MATH  Google Scholar 

  • AVT-202 (2014) Extensions of fundamental flow physics to practical MAV aerodynamics. Technical Report TR-AVT-202, NATO RTO

  • Babinsky H, Stevens R, Jones AR, Bernal L, Ol M (2015) Low order modelling of lift forces for unsteady pitching and surging wings (Invited). In: 54th AIAA aerospace sciences meeting and exhibit, San Diego, CA

  • Beem HR, Rival DE, Triantafyllou MS (2012) On the stabilization of leading-edge vortices with spanwise flow. Exp Fluids 52(2):511–517

    Article  Google Scholar 

  • Birch JM, Dickson WB, Dickinson MH (2004) Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J Exp Biol 207(7):1063–1072. doi:10.1242/jeb.00848

    Article  Google Scholar 

  • Carr ZR, Chen C, Ringuette MJ (2013) Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio. Exp Fluids 54:183–186. doi:10.1007/s00348-012-1444-8

    Article  Google Scholar 

  • Carr ZR, DeVoria AC, Ringuette M (2015) Aspect-ratio effects on rotating wings: circulation and forces. J Fluid Mech 767:497–525

    Article  Google Scholar 

  • Eldredge JD, Wang C, Ol MV (2009) A computational study of a canonical pitch-up, pitch-down wing maneuver. In: 39th AIAA fluid dynamics conference, San Antonio, TX

  • Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384(6610):626–630. doi:10.1038/384626a0

    Article  Google Scholar 

  • Garmann DJ, Visbal MR (2014) Dynamics of revolving wings for various aspect ratios. J Fluid Mech 748:932–956. doi:10.1017/jfm.2012.212

    Article  Google Scholar 

  • Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12(9):1422–1429

    Article  Google Scholar 

  • Harbig RR, Sheridan J, Thompson MC (2013) Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. J Fluid Mech 717:166–192. doi:10.1017/jfm.2012.565

    Article  MATH  Google Scholar 

  • Hunt JCR, Hussain F (1991) A note on velocity, vorticity and helicity of inviscid fluid elements. J Fluid Mech 229:569–587. doi:10.1017/S0022112091003178

    Article  MathSciNet  MATH  Google Scholar 

  • Jardin T, David L, Farcy A (2009) Characterization of vortical structures and loads based on time-resolved PIV for asymmetric hovering flapping flight. Exp Fluids 46(5):847–857. doi:10.1007/s00348-009-0632-7

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  MATH  Google Scholar 

  • Jones AR, Babinsky H (2011) Reynolds number effects on leading edge vortex development on a waving wing. Exp Fluids 51:197–210. doi:10.1007/s00348-010-1037-3

    Article  Google Scholar 

  • Kim D, Gharib M (2010) Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp Fluids 49(1):329–339

    Article  Google Scholar 

  • Kolluru Venkata S, Jones AR (2013) Leading-edge vortex structure over multiple revolutions of a rotating wing. J Aircr 50(4):1312–1316

    Article  Google Scholar 

  • Lawson NJ, Wu J (1997) Three-dimensional particle image velocimetry: experimental error analysis of a digital angular stereoscopic system. Meas Sci Technol 8(12):1455

    Article  Google Scholar 

  • Lentink D, Dickinson M (2009) Rotational accelerations stabilize leading edge vortices on revolving fly wings. J Exp Biol 212(16):2705–2719

    Article  Google Scholar 

  • Liu Z, Adrian RJ, Hanratty TJ (2001) Large-scale modes of turbulent channel flow: transport and structure. J Fluid Mech 448:53–80. doi:10.1017/S0022112001005808

    Article  MATH  Google Scholar 

  • Lourenco L, Subramanian S, Ding Z (1997) Time series velocity field reconstruction from PIV data. Meas Sci Technol 8(12):1533–1538

    Article  Google Scholar 

  • Lu Y, Shen GX (2008) Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing. J Exp Biol 211(8):1221–1230

    Article  Google Scholar 

  • Lumley JL (1970) Stochastic tools in turbulence. Dover books on engineering. Dover Publications, Mineola

    Google Scholar 

  • Manar F, Medina A, Jones AR (2014) Tip vortex structure and aerodynamic loading on rotating wings in confined spaces. Exp Fluids 55(9):1815. doi:10.1007/s00348-014-1815-4

    Article  Google Scholar 

  • Manar FH, Mancini P, Mayo D, Jones AR (2015) Comparison of rotating and translating wings: force production and vortex characteristics. AIAA J 1–12. doi:10.2514/1.J054422

  • Mancini P, Granlund K, Ol M, Jones AR (2015) Unsteady aerodynamic characteristics of a translating rigid wing at low Reynolds number. Phys Fluids 27(12):123102. doi:10.1063/1.493639

    Article  Google Scholar 

  • Maxworthy T (1979) Experiments on the Weis–Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J Fluid Mech 93(1):47–63

    Article  Google Scholar 

  • Medina A, Jones AR (2015) Stereoscopic PIV analysis on rotary plates in bursting. In: 33rd AIAA applied aerodynamics conference, Dallas, TX. doi:10.2514/6.2015-3297

  • Moffatt HK (2014) Helicity and singular structures in fluid dynamics. Proc Natl Acad Sci 111(10):3663–3670. doi:10.1073/pnas.1400277111

    Article  MathSciNet  Google Scholar 

  • Moffatt HK, Tsinober A (1992) Helicity in laminar and turbulent flow. Annu Rev Fluid Mech 24:281–312

    Article  MathSciNet  MATH  Google Scholar 

  • Mulleners K, Raffel M (2012) The onset of dynamic stall revisited. Exp Fluids 52(3):779–793. doi:10.1007/s00348-011-1118-y

    Article  Google Scholar 

  • Ozen CA, Rockwell D (2012) Flow structure on a rotating plate. Exp Fluids 52(1):207–223

    Article  MATH  Google Scholar 

  • Pedocchi F, Martin JE, Garcia MH (2008) Inexpensive fluorescent particles for large-scale experiments using particle image velocimetry. Exp Fluids 45:183–186. doi:10.1007/s00348-008-0516-2

    Article  Google Scholar 

  • Percin M, van Oudheusden BW (2015) Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates. Exp Fluids 56:47. doi:10.1007/s00348-015-1915-9

    Google Scholar 

  • Pitt Ford C, Babinsky H (2013) Lift and the leading-edge vortex. J Fluid Mech 720:280–313

    Article  MathSciNet  MATH  Google Scholar 

  • Poelma C, Dickson WB, Dickinson M (2006) Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp Fluids 41(2):213–225

    Article  Google Scholar 

  • Rival DE, Wong JG (2013) Measurements of vortex stretching on two-dimensional rotating plates with varying sweep. In: Proceedings of the 10th international symposium on particle image velocimetry, Delft, The Netherlands, July 1–3, 2013

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. Q Appl Math 45(10):561–590

    MathSciNet  MATH  Google Scholar 

  • Taylor JA, Glauser MN (2004) Towards practical flow sensing and control via POD and LSE based low-dimensional tools. J Fluids Eng 126(3):337–345. doi:10.1115/1.1760540

    Article  Google Scholar 

  • van den Berg C, Ellington CP (1997) The three-dimensional leading-edge vortex of a ’hovering’ model hawkmoth. Philos Trans R Soc B 352(1351):329–340

    Article  Google Scholar 

  • Wojcik CJ, Buchholz JHJ (2014) Vorticity transport in the leading-edge vortex on a rotating blade. J Fluid Mech 743:249–261. doi:10.1017/jfm.2014.18

    Article  Google Scholar 

  • Wong J, Rival D (2015) Determining the relative stability of leading-edge vortices on nominally two-dimensional flapping profiles. J Fluid Mech 766:611–625. doi:10.1017/jfm.2015.39

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the U.S. Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0251 (Jones) and an appointment to the Science Education Programs at Oak Ridge National Laboratory, administered by ORAU through the U.S. Department of Energy Oak Ridge Institute for Science and Education (Medina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anya R. Jones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, A.R., Medina, A., Spooner, H. et al. Characterizing a burst leading-edge vortex on a rotating flat plate wing. Exp Fluids 57, 52 (2016). https://doi.org/10.1007/s00348-016-2143-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2143-7

Keywords

Navigation