Skip to main content
Log in

Effect of initial vortex core size on the coherent structures in the swirling jet near field

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This study investigates the sensitivity to initial conditions of swirling jets undergoing vortex breakdown. Emphasis is placed on the recirculation bubble and on the helical coherent structures that evolve in its periphery. It is proposed that the vortex core size of the incoming swirling jet is the critical parameter that determines the dynamics of these coherent structures. This proposition is assessed with Stereo Particle-Image-Velocimetry (PIV) measurements of the breakdown region of two swirling jet configurations with different vortex core sizes at very similar overall swirl intensities. The swirling jets were generated by radial vanes entering a mixing tube, and the vortex core size was adjusted by using different center-body geometries. The time-averaged flow fields in the breakdown region reveal substantial differences in the jet spreading and the size of the recirculation bubble. Proper Ortogonal Decomposition (POD) was applied to the anti-axisymmetric and axisymmetric velocity fluctuations, to reconstruct the dynamics of the helical instability and the breakdown bubble, respectively. We find that the mode shape of the helical instability is not affected by the vortex core size. The frequency is found to coincide with the vortex core rotation rate, which relates inversely to the core size. The shape and dynamics of the non-periodic breakdown bubble are significantly affected by a change in vortex core size. The POD reveals that the energy content of the dominant non-periodic structure is changed markedly with the vortex core size. The bubble dynamics are further investigated by tracking the upstream stagnation point from the PIV snapshots. It is shown that a larger vortex core promotes smooth fluctuations of the recirculation bubble, while a small initial vortex core is linked to bimodal fluctuations of the recirculation bubble. The conclusions drawn from this study are relevant for fundamental swirling jet studies, as well as for the design of swirl-stabilized combustors, where the investigated coherent structures influence combustion performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Barlow JB, Rae WH, Pope A (1999) Low-speed wind tunnel testing, 3rd edn. Wiley, New York

    Google Scholar 

  • Batchelor GK (1999) An introduction to fluid dynamics, 2nd edn. Cambridge mathematical library, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Billant P, Chomaz JM, Huerre P (1998) Experimental study of vortex breakdown in swirling jets. J Fluid Mech 376:183–219. doi:10.1017/S0022112098002870

    Article  MATH  MathSciNet  Google Scholar 

  • Chigier NA, Chervinsky A (1967) Experimental investigation of swirling vortex motion in jets. J Appl Mech 34(2):443–451. doi:10.1115/1.3607703

    Article  Google Scholar 

  • Depardon S, Lasserre JJ, Brizzi LE, Borée J (2006) Instantaneous skin-friction pattern analysis using automated critical point detection on near-wall piv data. Meas Sci Technol 17(7):1659

    Article  Google Scholar 

  • Escudier M (1987) Confined vortices in flow machinery. Annu Rev Fluid Mech 19(1):27–52

    Article  Google Scholar 

  • Farokhi S, Taghavi R, Rice EJ (1989) Effect of initial swirl distribution on the evolution of a turbulentjet. AIAA J 27(6):700–706. doi:10.2514/3.10168

    Article  Google Scholar 

  • Foss J (2004) Surface selections and topological constraint evaluations for flow field analyses. Exp Fluids 37(6):883–898. doi:10.1007/s00348-004-0877-0

    Article  Google Scholar 

  • Greitzer EM, Tan CS, Graf MB (2004) Internal flow: concepts and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hallett W, Toews D (1987) The effects of inlet conditions and expansion ratio on the onset of flow reversal in swirling flow in a sudden expansion. Exp Fluids 5(2):129–133. doi:10.1007/BF00776183

    Article  Google Scholar 

  • Holmes P, Lumley J, Berkooz G (1998) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hosseini Z, Martinuzzi R, Noack B (2015) Sensor-based estimation of the velocity in the wake of a low-aspect-ratio pyramid. Exp Fluids. doi:10.1007/s00348-014-1880-8

    Google Scholar 

  • Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Studying turbulence using numerical simulation databases, 2, vol 1, pp 193–208

  • Krüger O, Terhaar S, Paschereit CO, Duwig C (2013) Large eddy simulations of hydrogen oxidation at ultra-wet conditions in a model gas turbine combustor applying detailed chemistry. J Eng Gas Turbines Power 135(2):021501. doi:10.1115/1.4007718

    Article  Google Scholar 

  • Leclaire B, Jacquin L (2012) On the generation of swirling jets: high-Reynolds-number rotating flow in a pipe with a final contraction. J Fluid Mech 692:78–111. doi:10.1017/jfm.2011.497

    Article  MATH  MathSciNet  Google Scholar 

  • Liang H, Maxworthy T (2005) An experimental investigation of swirling jets. J Fluid Mech 525:115–159. doi:10.1017/S0022112004002629

    Article  MATH  Google Scholar 

  • Oberleithner K, Sieber M, Nayeri CN, Paschereit CO, Petz C, Hege HC, Noack BR, Wygnanski I (2011) Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J Fluid Mech 679:383–414. doi:10.1017/S0022112011001418

    Article  MATH  Google Scholar 

  • Oberleithner K, Seele R, Paschereit CO, Wygnanski I (2012) The formation of turbulent vortex breakdown: intermittency, criticality, and global instability. AIAA J 50(7):1437–1452

    Article  Google Scholar 

  • Oberleithner K, Paschereit CO, Wygnanski I (2014) On the impact of swirl on the growth of coherent structures. J Fluid Mech 741:156–199. doi:10.1017/jfm.2013.669

    Article  MathSciNet  Google Scholar 

  • Panda J, McLaughlin DK (1994) Experiments on the instabilities of a swirling jet. Phys Fluids 6(1):263–276

    Article  Google Scholar 

  • Paschereit CO, Gutmark E, Weisenstein W (1999) Coherent structures in swirling flows and their role in acoustic combustion control. Phys Fluids 11(9):2667–2678

    Article  MATH  Google Scholar 

  • Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry: a practical guide. Engineering online library, Springer, Berlin

    Book  Google Scholar 

  • Reichel TG, Terhaar S, Paschereit O (2015) Increasing flashback resistance in lean premixed swirl-stabilized hydrogen combustion by axial air injection. J Eng Gas Turbines Power 137(7):071,503. doi:10.1115/1.4029119

    Article  Google Scholar 

  • Ruith MR, Chen P, Meiburg E, Maxworthy T (2003) Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J Fluid Mech 486:331–378. doi:10.1017/S0022112003004749

    Article  MATH  MathSciNet  Google Scholar 

  • Scarano F (2002) Iterative image deformation methods in PIV. Meas Sci Technol 13(1):R1

    Article  Google Scholar 

  • Shiri A, George WK, Naughton JW (2008) Experimental study of the far field of incompressible swirling jets. AIAA J 46(8):2002–2009. doi:10.2514/1.32954

    Article  Google Scholar 

  • Soloff SM, Adrian RJ, Liu ZC (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8(12):1441

    Article  Google Scholar 

  • Stanislas M, Okamoto K, Kähler C, Westerweel J, Scarano F (2008) Main results of the third international PIV challenge. Exp Fluids 45(1):27–71. doi:10.1007/s00348-008-0462-z

    Article  Google Scholar 

  • Stöhr M, Boxx I, Carter CD, Meier W (2012) Experimental study of vortex-flame interaction in a gas turbine model combustor. Combust Flame 159(8):2636–2649. doi:10.1016/j.combustflame.2012.03.020

    Article  Google Scholar 

  • Stuart JT (1967) On finite amplitude oscillations in laminar mixing layers. J Fluid Mech 29(3):417–440

    Article  MATH  Google Scholar 

  • Syred N, Fick W, O’Doherty T, Griffiths AJ (1997) The effect of the precessing vortex core on combustion in a swirl burner. Combust Sci Technol 125(1–6):139–157. doi:10.1080/00102209708935657

    Article  Google Scholar 

  • Terhaar S, Oberleithner K, Paschereit CO (2014) Impact of steam-dilution on the flame shape and coherent structures in swirl-stabilized combustors. Combust Sci Technol 186(7):889–911. doi:10.1080/00102202.2014.890597

    Article  Google Scholar 

  • Toh I, Honnery D, Soria J (2010) Axial plus tangential entry swirling jet. Exp Fluids 48(2):309–325. doi:10.1007/s00348-009-0734-2

    Article  Google Scholar 

  • Willert C, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10(4):181–193. doi:10.1007/BF00190388

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the German Science Foundation (DFG) under Project PA 920/29-1 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Rukes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rukes, L., Sieber, M., Paschereit, C.O. et al. Effect of initial vortex core size on the coherent structures in the swirling jet near field. Exp Fluids 56, 197 (2015). https://doi.org/10.1007/s00348-015-2066-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2066-8

Keywords

Navigation