Skip to main content
Log in

Three-dimensional flow structure along simultaneously pitching and rotating wings: effect of pitch rate

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The flow structure along a simultaneously pitching and rotating wing is investigated using quantitative flow visualization. Imaging is performed for a range of pitch rates, with emphasis on the three-dimensional structure during start-up and relaxation. Surfaces of transparent iso-Q and helicity are employed to interpret the flow physics. The onset and development of the components of the vortex system, i.e., the leading-edge, tip, and trailing-edge vortices, are strongly influenced by the value of pitch rate relative to the rotation rate. Comparisons at the same angle of attack indicate that the formation of vortical structures is delayed with increasing pitch rate. However, comparisons at the same rotation angle for different values of pitch rate reveal similar flow structures, thereby indicating predominance of rotation effects. Extreme values of pitch rate can lead to radically different sequences of development of the components of the three-dimensional vortex system. Nevertheless, consistently positive vorticity flux is maintained through these components and the coherence of the vortex system is maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bross M, Rockwell D (2014) Flow structure on a simultaneously pitching and rotating wing. J Fluid Mech 756:354–383. doi:10.1017/jfm.2014.458

    Article  Google Scholar 

  • Bross M, Ozen CA, Rockwell D (2013) Flow structure on a rotating wing: effect of steady incident flow. Phys Fluids. doi:10.1063/1.4816632

    Google Scholar 

  • Carr ZR, Chen C, Ringuette MJ (2013a) Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio. Exp Fluids 54:1444–1470. doi:10.1007/s00348-012-1444-8

    Article  Google Scholar 

  • Carr ZR, DeVoria AC, Ringuette MJ (2013b) Aspect ratio effects on the leading-edge circulation and forces of rotating flat-plate wings. In: AIAA Paper 2013-0675

  • Carr ZR, DeVoria AC, Ringuette MJ (2015) Aspect-ratio effects on rotating wings: circulation and forces. J Fluid Mech 767:497–525. doi:10.1017/jfm.2015.44

    Article  Google Scholar 

  • Dickson WB, Dickinson MH (2004) The effect of advance ratio on the aerodynamics of revolving wings. J Exp Biol 207:4269–4281. doi:10.1242/jeb.01266

    Article  Google Scholar 

  • Ekaterinaris JA, Platzer M (1998) Computation predictions of airfoil dynamic stall. Prog Aerosp Sci 33:759–846. doi:10.1016/S0376-0421(97)00012-2

    Article  Google Scholar 

  • Eldredge JD, Wang C (2010) High-fidelity simulations and low-ordering modeling of a rapidly pitching plate. In: AIAA Paper 2010-4281

  • Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630

    Article  Google Scholar 

  • Garmann DJ, Visbal MR (2011) Numerical investigation of transitional flow over a rapidly pitching plate. Phys Fluids. doi:10.1063/1.3626407

    Google Scholar 

  • Garmann DJ, Visbal MR (2013) A numerical study of hovering wings undergoing revolving or translating motions. In: AIAA Paper 2013-3052

  • Garmann DJ, Visbal MR (2014) Dynamics of revolving wings for various aspect ratios. J Fluid Mech 748:932–956. doi:10.1017/jfm.2014.212

    Article  Google Scholar 

  • Garmann DJ, Visbal MR, Orkwis PD (2013) Three-dimensional flow structure and aerodynamic loading on a revolving wing. Phys Fluids. doi:10.1063/1.4794753

    Google Scholar 

  • Harbig RR, Sheridan J, Thompson MC (2014) The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight. J Fluid Mech 751:71–105. doi:10.1017/jfm.2014.262

    Article  MathSciNet  Google Scholar 

  • Hartloper C, Kinzel M, Rival DE (2013) On the competition between leading-edge and tip-vortex growth for a pitching plate. Exp Fluids 54:1447–1458. doi:10.1007/s00348-012-1447-5

    Article  Google Scholar 

  • Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Studying turbulence using numerical simulation databases, vol 2, pp 193–208

  • Jones AR, Babinsky H (2011) Reynolds number effects on leading edge vortex development on a waving wing. Exp Fluids 10:197–210. doi:10.1007/s00348-010-1037-3

    Article  Google Scholar 

  • Kim D, Gharib M (2010) Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp Fluids 49:329–339. doi:10.1007/s00348-010-0872-6

    Article  Google Scholar 

  • Lehmann FO, Dickinson MH (1998) The control of wing kinematics and flight forces in fruit flies. J Exp Biol 401:385–401

    Google Scholar 

  • Lentink D, Dickinson MH (2009a) Biofluiddynamic scaling of flapping, spinning and translating fins and wings. J Exp Biol 212:2691–2704. doi:10.1242/jeb.022251

    Article  Google Scholar 

  • Lentink D, Dickinson MH (2009b) Rotational accelerations stabilize leading edge vortices on revolving fly wings. J Exp Biol 212:2705–2719. doi:10.1242/jeb.022269

    Article  Google Scholar 

  • Manar F, Medina A, Jones AR (2014) Tip vortex structure and aerodynamic loading on rotating wings in confined spaces. Exp Fluids 55:1815–1833. doi:10.1007/s00348-014-1815-4

    Article  Google Scholar 

  • McCroskey WJ (1982) Unsteady airfoils. Annu Rev Fluid Mech 14:285–311. doi:10.1146/annurev.fl.14.010182.001441

    Article  Google Scholar 

  • Moffatt HK (1969) The degree of knottedness of tangled vortex lines. J Fluid Mech 35:117–129

    Article  MATH  Google Scholar 

  • Ozen CA, Rockwell D (2011) Flow structure on a rotating plate. Exp Fluids 52:207–223. doi:10.1007/s00348-011-1215-y

    Article  Google Scholar 

  • Ozen CA, Rockwell D (2012) Three-dimensional vortex structure on a rotating wing. J Fluid Mech 707:1–10. doi:10.1017/jfm.2012.298

    Article  Google Scholar 

  • Percin M, Van Oudheusden BW (2015) Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates. Exp Fluids 56:1–19. doi:10.1007/s00348-015-1915-9

    Article  Google Scholar 

  • Percin M, Ziegler L, Van Oudheusden BW (2014) Flow around a suddenly accelerated rotating plate at low reynolds number. In: 17th International symposium on applications of laser techniques to fluid mechanics

  • Poelma C, Dickson WB, Dickinson MH (2006) Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp Fluids 41:213–225. doi:10.1007/s00348-006-0172-3

    Article  Google Scholar 

  • Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208. doi:10.1242/jeb.00663

    Article  Google Scholar 

  • Shih C, Lourenco L, Dommelen LVan, Krothapallij A (1992) Unsteady flow past an airfoil pitching at a constant rate. AIAA J 30:1153–1161. doi:10.2514/3.11045

    Article  Google Scholar 

  • Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang C-KCK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46:284–327. doi:10.1016/j.paerosci.2010.01.001

    Article  Google Scholar 

  • Visbal MR (2012) Flow structure and unsteady loading over a pitching and perching low-aspect-ratio wing. In: AIAA Paper 2012-3279

  • Visbal MR, Shang JS (1989) Investigation of the flow structure around a rapidly pitching airfoil. AIAA J 27:1044–1051

    Article  Google Scholar 

  • Wojcik CJ, Buchholz JHJ (2014) Vorticity transport in the leading-edge vortex on a rotating blade. J Fluid Mech 743:249–261. doi:10.1017/jfm.2014.18

    Article  Google Scholar 

  • Wolfinger M, Rockwell D (2014) Flow structure on a rotating wing: effect of radius of gyration. J Fluid Mech 755:83–110. doi:10.1017/jfm.2014.383

    Article  Google Scholar 

  • Yilmaz TO, Rockwell D (2012) Flow structure on finite-span wings due to pitch-up motion. J Fluid Mech 691:518–545. doi:10.1017/jfm.2012.490

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are pleased to acknowledge the financial support of the Air Force Office of Scientific Research under Grant No. FA9550-11-1-0069 monitored by Dr. Douglas Smith.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bross.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bross, M., Rockwell, D. Three-dimensional flow structure along simultaneously pitching and rotating wings: effect of pitch rate. Exp Fluids 56, 82 (2015). https://doi.org/10.1007/s00348-015-1952-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-1952-4

Keywords

Navigation