Skip to main content
Log in

Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted solid substrates

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The impact of a droplet onto a dry or wet surface leads to a rapid formation of a shear flow at the boundary. We present a novel method to experimentally resolve this flow in time at different heights above the solid. The radial flow field close to the substrate is reconstructed by evaluation of streak images of fluorescent tracer particles in the liquid. By using a microscope objective with a narrow depth of field, it is possible to scan through the flow in thin horizontal layers of 5 μm thickness. We focus on the flow close (≤40 μm) to the boundary during the impact of elongated drops with diameters of 0.3–0.4 mm and speeds in the range of 2–3 m s−1. The spatial resolution is obtained from several individual events of the repeatable impact process and varying the focal plane. Fluorescent streaks formed by the suspended particles are recorded with high-speed photography at up to 20,000 frames per second. The impact of water and of ethanol is investigated both on dry glass and on glass covered with a thin film of the same liquid. Results are given as spatio-temporal maps of radial flow velocity at different heights, and the maximum shear stress at the substrate is evaluated. The implications of the results are discussed with respect to cleaning applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The parameters chosen lead to reproducible timing and shape of the impacting drops for all four cases (water and ethanol; dry and impact onto a liquid film). Faster drops tended to disintegrate frequently and were less reproducible.

References

  • Andreas MT, Wostyn K, Wada M, Janssens T, Kenis K, Bearda T, Mertens PW (2009) High velocity aerosol cleaning with organic solvents: particle removal and substrate damage. Solid State Phenom 145–146:39–42

    Article  Google Scholar 

  • Berberović E, van Hinsberg NP, Jakirlić S, Roisman IV, Tropea C (2009) Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys Rev E 79:036,306

    Article  Google Scholar 

  • Bouwhuis W, van der Veen RCA, Tran T, Keij DL, Winkels KG, Peters IR, van der Meer D, Sun C, Snoeijer JH, Lohse D (2012) Maximal air bubble entrainment at liquid-drop impact. Phys Rev Lett 109:264,501

    Article  Google Scholar 

  • Castrejón JR, Betton ES, Kubiak KJ, Wilson MCT, Hutchings IM (2011) The dynamics of the impact and coalescence of droplets on a solid surface. Biomicrofluidics 5(1):014112

    Article  Google Scholar 

  • Chandra S, Avedisian CT (1991) On the collision of a droplet with a solid surface. Proc R Soc Lond Ser A 432(1884):13–41

    Article  Google Scholar 

  • Clanet C, Béguin C, Richard D, Quére D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208

    Article  MATH  Google Scholar 

  • Cossali G, Coghe A, Marengo M (1997) The impact of a single drop on a wetted solid surface. Exp Fluids 22(6):463–472

    Article  Google Scholar 

  • de Ruiter J, Oh JM, van den Ende D, Mugele F (2012) Dynamics of collapse of air films in drop impact. Phys Rev Lett 108:074,505

    Article  Google Scholar 

  • Dear JP, Field JE (1988) Highspeed photography of surface geometry effects in liquid/solid impact. J Appl Phys 63(4):1015–1021

    Article  Google Scholar 

  • Dimotakis PE, Debussy FD, Koochesfahani MM (1981) Particle streak velocity field measurements in a two-dimensional mixing layer. Phys Fluids 24(6):995–999

    Article  Google Scholar 

  • Driscoll MM, Nagel SR (2011) Ultrafast interference imaging of air in splashing dynamics. Phys Rev Lett 107:154,502

    Article  Google Scholar 

  • Erkan N, Okamoto K (2014) Full-field spreading velocity measurement inside droplets impinging on a dry solid surface. Exp Fluids 55(11):1845

    Article  Google Scholar 

  • Frommhold PE, Lippert A, Holsteyns FL, Mettin R (2014) High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup. Exp Fluids 55(4):1716

    Article  Google Scholar 

  • Haller KK, Ventikos Y, Poulikakos D (2002) Computational study of high-speed liquid droplet impact. J Appl Phys 92(5):2821–2828

    Article  Google Scholar 

  • Haller KK, Poulikakos D, Ventikos Y, Monkewitz P (2003a) Shock wave formation in droplet impact on a rigid surface: lateral liquid motion and multiple wave structure in the contact line region. J Fluid Mech 490:1–14

    Article  MATH  Google Scholar 

  • Haller KK, Ventikos Y, Poulikakos D (2003b) Wave structure in the contact line region during high speed droplet impact on a surface: solution of the riemann problem for the stiffened gas equation of state. J Appl Phys 93(5):3090–3097

    Article  Google Scholar 

  • Joukowsky N (1900) Über den hydraulischen Stoß in Wasserleitungsröhren. Mémoires de l’Académie Impériale des Sciences de St-Pétersbourg 8(9):1–71

    Google Scholar 

  • Kanno I, Yokoi N, Sato K (1997) Wafer cleaning by water and gas mixture with high velocity. Electrochem Soc Proc 98:54–61

    Google Scholar 

  • Kennedy C, Field J (2000) Damage threshold velocities for liquid impact. J Mater Sci 35(21):5331–5339

    Article  Google Scholar 

  • Lindken R, Rossi M, Große S, Westerweel J (2009) Micro-particle image velocimetry (PIV): recent developments, applications, and guidelines. Lab Chip 9:2551–2567

    Article  Google Scholar 

  • Mandre S, Mani M, Brenner MP (2009) Precursors to splashing of liquid droplets on a solid surface. Phys Rev Lett 102:134,502

    Article  Google Scholar 

  • Mani M, Mandre S, Brenner MP (2010) Events before droplet splashing on a solid surface. J Fluid Mech 647:163–185

    Article  MATH  MathSciNet  Google Scholar 

  • Mehdizadeh NZ, Chandra S, Mostahhimi J (2004) Formation of fingers around the edges of a drop hitting a metal plate with high velocity. J Fluid Mech 510:353–373

    Article  MATH  Google Scholar 

  • Meinhart CD, Wereley ST, Santiago JG (1999) Piv measurements of a microchannel flow. Exp Fluids 27(5):414–419

    Article  Google Scholar 

  • Ohl CD, Arora M, Dijkink R, Janve V, Lohse D (2006) Surface cleaning from laser-induced cavitation bubbles. Appl Phys Lett 89:074,102–1–074,102–3

    Article  Google Scholar 

  • Okorn-Schmidt HF, Holsteyns F, Lippert A, Mui D, Kawaguchi M, Lechner C, Frommhold PE, Nowak T, Reuter F, Piqué MB et al (2014) Particle cleaning technologies to meet advanced semiconductor device process requirements. ECS J Solid State Sci Technol 3(1):N3069–N3080

    Article  Google Scholar 

  • Pan KL, Tseng KC, Wang CH (2010) Breakup of a droplet at high velocity impacting a solid surface. Exp Fluids 48(1):143–156

    Article  Google Scholar 

  • Pumphrey HC, Crum LA, Bjørnø L (1989) Underwater sound produced by individual drop impacts and rainfall. J Acoust Soc Am 85(4):1518–1526

    Article  Google Scholar 

  • Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12(2):61

    Article  Google Scholar 

  • Rein M, Delplanque JP (2008) The role of air entrainment on the outcome of drop impact on a solid surface. Act Mech 201(1–4):105–118

    Article  MATH  Google Scholar 

  • Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33(1):112–124

    Article  Google Scholar 

  • Roisman IV, Rioboo R, Tropea C (2002) Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc R Soc Lond A 458(2022):1411–1430

    Article  MATH  Google Scholar 

  • Roisman IV, Berberovic E, Tropea C (2009) Inertia dominated drop collisions. I. on the universal flow in the lamella. Phys Fluids 21:052103-1–052103-10

    Google Scholar 

  • Smith M, Bertola V (2011) Particle velocimetry inside newtonian and non-newtonian droplets impacting a hydrophobic surface. Exp Fluids 50(5):1385–1391

    Article  Google Scholar 

  • Srikar R, Gambaryan-Roisman T, Steffes C, Stephan P, Tropea C, Yarin AL (2009) Nanofiber cating of surfaces for intensification of drop or spray impact cooling. Int J Heat Mass Transf 52:5812–5826

    Article  Google Scholar 

  • Streule W, Lindemann T, Birkle G, Zengerle R, Koltay P (2004) Pipejet: a simple disposable dispenser for the nano- and microliter range. J Assoc Lab Autom 9(5):300–306

    Article  Google Scholar 

  • Thoraval MJ, Takehara K, Etoh TG, Thoroddsen ST (2013) Drop impact entrapment of bubble rings. J Fluid Mech 724:234–258

    Article  MATH  Google Scholar 

  • Thoroddsen ST, Sakakibara J (1998) Evolution of the fingering pattern of an impacting drop. Phys Fluids 10(6):1359–1374

    Article  Google Scholar 

  • Thoroddsen ST (2002) The ejecta sheet generated by the impact of a drop. J Fluid Mech 451:373–381

    Article  MATH  MathSciNet  Google Scholar 

  • Thoroddsen ST, Thoraval MJ, Takehara K, Etoh TG (2011) Droplet splashing by a slingshot mechanism. Phys Rev Lett 106:034,501

    Article  Google Scholar 

  • van Dam DB, Clerc CL (2004) Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys Fluids 16(9):3403–3414

    Article  Google Scholar 

  • van der Veen RCA, Tran T, Lohse D, Sun C (2012) Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys Rev E 85:026,315-1–026,315-6

    Google Scholar 

  • van Hinsberg NP, Budakli M, Göhler S, Berberović E, Roisman IV, Gambaryan-Roisman T, Tropea C, Stephan P (2010) Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses. J Colloid Interface Sci 350(1):336–343

    Article  Google Scholar 

  • Visser CW, Tagawa Y, Sun C, Lohse D (2012) Microdroplet impact at very high velocity. Soft Matter 8:10,732–10,737

    Article  Google Scholar 

  • Visser CW, Frommhold PE, Wildeman S, Mettin R, Lohse D, Sun C (2015) Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter 11:1708–1722

    Article  Google Scholar 

  • Watanabe M, Sanada T, Hayashida A, Isago Y (2009) Cleaning technique using high-speed steam-water mixed spray. Solid State Phenom 145–146:43–46

    Article  Google Scholar 

  • Weiss DA, Yarin AL (1999) Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J Fluid Mech 385:229–254

    Article  MATH  Google Scholar 

  • Worthington AM (1908) A study of splashes. Longmans, Green, New York

    Google Scholar 

  • Xu L, Zhang WW, Nagel SR (2005) Drop splashing on a dry smooth surface. Phys Rev Lett 94:184,505

    Article  Google Scholar 

  • Xu K, Pichler S, Wostyn K, Cado G, Springer C, Gale GW, Dalmer M, Mertens PW, Bearda T, Gaulhofer E, Podlesnik D (2009) Removal of nano-particles by aerosol spray: effect of droplet size and velocity on cleaning performance. Solid State Phenom 145:31–34

    Article  Google Scholar 

  • Yarin AL, Weiss DA (1995) Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J Fluid Mech 283:141–173

    Article  Google Scholar 

  • Yarin A (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank W. Lauterborn for valuable comments regarding the manuscript. The financial support by the Austrian Federal Ministry of Economy, Family and Youth and the Austrian National Foundation for Research, Technology and Development is gratefully acknowledged as is the support from Lam Research AG. Special thanks go to Chan Chon U for inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Erhard Frommhold.

Appendix

Appendix

For estimation of the depth of field \(\delta z\) we used equation (4) from Meinhart et al. (1999)

$$\begin{aligned} \delta z=\frac{n\lambda }{NA^2}+\frac{ne}{M\,NA} \end{aligned}$$

with index of refraction \(n=1\), fluorescence wavelength \(\lambda = 612 \,\hbox {nm}\), numerical aperture \(NA=0.725\), smallest resolvable distance of the image detector \(e = 20 \, \upmu \hbox {m}\), and magnification \(M=20\). This results in a value of 2.4 \(\upmu \hbox {m}\) for the depth of field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frommhold, P.E., Mettin, R. & Ohl, CD. Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted solid substrates. Exp Fluids 56, 76 (2015). https://doi.org/10.1007/s00348-015-1944-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-1944-4

Keywords

Navigation