Skip to main content
Log in

Outer ligament-mediated spray formation of annular liquid sheet by an inner round air stream

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The interfacial jetting phenomena of coaxial air-assisted water jets are studied using high-speed digital camera. Here, an inner round air jet is injected into annular water sheet spray. The experimental photographs show that the outside interface of liquid sheet shoots out large numbers of violent ligaments at high air velocity. The ligament velocity, ligament angle, ligament diameter, fragment size, and distribution are measured and analyzed. There are two kinds of ligament evolution that are breakup and contraction. An empirical model is also proposed for the ligament evolution process. At last, we obtain the criterion of critical Weber number on the ligament breakup based on the experimental results. This suggestion agrees well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Adzic M, Carvalho IS, Heitor MV (2001) Visualisation of the disintegration of an annular liquid sheet in a coaxial airblast injector at low atomising air velocities. Opt Diagnost Eng 5:27–38

    Google Scholar 

  • Carvalho IS, Heitor MV (1998) Liquid film break-up in a model of a prefilming airblast nozzle. Exp Fluids 24:408–415

    Article  Google Scholar 

  • Chen F, Tsaur J, Durst F, Das SK (2003) On the axisymmetry of annular jet instabilities. J Fluid Mech 488:355–367

    Article  MATH  MathSciNet  Google Scholar 

  • Clanet C, Lasheras JC (1999) Transition from dripping to jetting. J Fluid Mech 383:307–326

    Article  MATH  MathSciNet  Google Scholar 

  • Duke D, Honnery D, Soria J (2010) A cross-correlation velocimetry technique for breakup of an annular liquid sheet. Exp Fluids 49:435–445

    Article  Google Scholar 

  • Duke D, Honnery D, Soria J (2012) Experimental investigation of nonlinear instabilities in annular liquid sheets. J Fluid Mech 691:594–604

    Article  MATH  Google Scholar 

  • Dumouchel C (2008) On the experimental investigation on primary atomization of liquid streams. Exp Fluids 45(3):371–422

    Article  Google Scholar 

  • Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71(3):036601

    Article  Google Scholar 

  • Gadgil HP, Raghunandan BN (2011) Some features of spray breakup in effervescent atomizers. Exp Fluids 50(2):329–338

    Article  Google Scholar 

  • Ganan-Calvo AM (2004) Perfectly monodisperse microbubbling by capillary flow focusing: an alternate physical description and universal scaling. Phys Rev E 69:027301

    Article  Google Scholar 

  • Ganan-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87:274501

    Article  Google Scholar 

  • Ganan-Calvo AM, Herrada MA, Garstecki P (2006) Bubbling in unbounded coflowing liquids. Phys Rev Lett 96:124504

    Article  Google Scholar 

  • Jiang DJ, Liu HF, Li WF, Xu JL, Wang FC, Gong X (2011) Modeling atomization of a round water jet by a high-speed annular air jet based on the self-similarity of droplet breakup. Chem Eng Res Des 90:185–192

    Article  Google Scholar 

  • Kendall JM (1986) Experiments on annular liquid jet instability and on the formation of liquid shells. Phys Fluids 29:2086–2094

    Article  Google Scholar 

  • Leboucher N, Roger F, Carreau JL (2012) Characteristics of the spray produced by the atomization of an annular liquid sheet assisted by an inner gas jet. At Sprays 22(6):515–542

    Article  Google Scholar 

  • Lefebvre AH (1989) Atomization and sprays. Hemisphere, New York

    Google Scholar 

  • Lhuissier H, Villermaux E (2013) ‘Effervescent’ atomization in two dimensions. J Fluid Mech 714:361–392

    Article  MATH  MathSciNet  Google Scholar 

  • Liu HF, Gong X, Li WF, Wang FC, Yu ZH (2006a) Prediction of droplet size distribution in sprays of prefilming air-blast atomizers. Chem Eng Sci 61:1741–1747

    Article  Google Scholar 

  • Liu HF, Gong X, Li WF, Cao XK et al (2006b) Effect of liquid jet diameter on performance of coaxial two-fluid air-blast atomizers. Chem Eng Prog 45:240–245

    Article  Google Scholar 

  • Marmottant P, Villermaux E (2004) On spray formation. J Fluid Mech 498:73–111

    Article  MATH  Google Scholar 

  • Martinez-Bazan C, Montanes JL, Lasheras JC (1999a) On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1 Breakup frequency. J Fluid Mech 401:157–182

    Article  MATH  Google Scholar 

  • Martinez-Bazan C, Montanes JL, Lasheras JC (1999b) On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size PDF of the resulting daughter bubbles. J Fluid Mech 401:183–207

    Article  Google Scholar 

  • Mehring C, Sirignano WA (2000a) Axisymmetric capillary waves on thin annular liquid sheets I Temporal stability. Phys Fluids 12:1417–1439

    Article  MATH  MathSciNet  Google Scholar 

  • Mehring C, Sirignano WA (2000b) Axisymmetric capillary waves on thin annular liquid sheets II. Spatial development. Phys. Fluids 12:1440–1460

    Article  MATH  MathSciNet  Google Scholar 

  • Meyer J, Weihs D (1987) Capillary instability of an annular liquid jet. J Fluid Mech 179:531–545

    Article  MATH  Google Scholar 

  • Miskin MZ, Jaeger HM (2012) Droplet formation and scaling in dense suspensions. PNAS 109:4389–4394

    Article  Google Scholar 

  • Oguz HN, Prosperetti A (1993) Dynamics of bubble growth and detachment from a needle. J Fluid Mech 227:111–145

    Article  Google Scholar 

  • Probstein RF (1994) Physicochemical hydrodynamics: an introduction. John Wiley & Sons, New York

    Book  Google Scholar 

  • Sevilla A, Gordillo JM, Martinez-Bazan C (2002) The effect of the diameter ratio on the absolute and convective instability of free coflowing jets. Phys Fluids 14:3028–3038

    Article  MathSciNet  Google Scholar 

  • Sevilla A, Gordillo JM, Martinez-Bazan C (2005) Transition from bubbling to jetting in a coaxial air-water jet. Phys Fluids 17:018105

    Article  Google Scholar 

  • Shen J, Li X (1996a) Instability of an annular viscous liquid jet. Acta Mech 114:167–183

    Article  MATH  Google Scholar 

  • Shen J, Li X (1996b) Breakup of annular viscous liquid jets in two gas streams. J Propul Power 12:752–759

    Article  Google Scholar 

  • Sivakumar D, Kulkarni V (2011) Regimes of spray formation in gas-centered swirl coaxial atomizers. Exp Fluids 51(3):587–596

    Article  Google Scholar 

  • Sovani SD, Sojka PE, Lefebvre AH (2001) Effervescent atomization. Prog Energy Combust Sci 27:483–521

    Article  Google Scholar 

  • Sultanov FM, Yarin AL (1990) Droplet size distribution in a percolation model for explosive liquid dispersal. J Appl Mech Tech Phys 31:708–713

    Article  Google Scholar 

  • Theofanous TG (2011) Aerobreakup of Newtonian and viscoelastic liquids. Ann Rev Fluid Mech 43:661–690

    Article  Google Scholar 

  • Villermaux E (2007) Fragmentation. Ann Rev Fluid Mech 39:419–446

    Article  MathSciNet  Google Scholar 

  • Villermaux E, Bossa B (2009) Single-drop fragmentation determines size distribution of raindrops. Nat Phys 5:697–702

    Article  Google Scholar 

  • Villermaux E, Bossa B (2011) Drop fragmentation on impact. J Fluid Mech 668:412–435

    Article  MATH  MathSciNet  Google Scholar 

  • Villermaux E, Eloi F (2011) The distribution of raindrops speeds. Geophys Res Lett 38:L19805

    Article  Google Scholar 

  • Wahono S, Honnery D, Soria J, Ghojel J (2008) High-speed visualisation of primary break-up of an annular liquid sheet. Exp Fluids 44:451–459

    Article  Google Scholar 

  • Wang YJ, Kyoung SI, Kamel F (2008) Similarity between the primary and secondary air-assisted liquid jet breakup mechanism. Phys Rev Lett 100:154502

    Article  Google Scholar 

  • Zhao H, Liu HF, Xu JL, Li WF, Cheng W (2012) Breakup and atomization of a round coal water slurry jet by an annular air jet. Chem Eng Sci 78:63–74

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (21176079), National Development Programming of Key Fundamental Researches of China (2010CB227005), Fundamental Research Funds for the Central Universities (WB1314046), and National Science Foundation for Postdoctoral Scientists of China (2012M520848).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (GIF 4536 kb)

Appendix: An empirical model for the ligament evolution process

Appendix: An empirical model for the ligament evolution process

Here, we suggest an empirical model for the ligament evolution process. When the ligament is long, the shape of ligament can be considered as a cylinder approximately. The surface tension plays an essential role in the ligament evolution process. So the acceleration generated by surface tension is

$$ a_{\sigma } = \frac{{F_{\sigma } }}{{m_{L} }} \approx \frac{{\pi D_{L0} \sigma }}{{\frac{\pi }{4}D_{L0}^{2} L\rho_{l} }} = \frac{4\sigma }{{D_{L0}^{{}} L\rho_{l} }} $$
(7)

In this test, it is the inviscid flow; here, the Euler equations now can be written as

$$ a_{\sigma } = - \left( {\frac{{\partial u_{L} }}{\partial t} + u_{L} \frac{{\partial u_{L} }}{\partial L}} \right) $$
(8)

Due to the ligament diameter is constant approximately, so the convective acceleration in Eq. (8) can be neglected. And the expression of acceleration can be deduced as \( \frac{{du_{L} }}{dt} = \frac{{du_{L} }}{dL}\frac{dL}{dt} = u_{L} \frac{{du_{L} }}{dL} \). Following the method suggested by Miskin and Jaeger (2012) recently, there is

$$ u_{L} \frac{{du_{L} }}{dL} \approx - \frac{4\sigma }{{D_{L0}^{{}} L\rho_{l} }} $$
(9)

The integral equation will be

$$ \int_{{u_{L0} }}^{{u_{L} }} {u_{L} du_{L} } = - \frac{4\sigma }{{D_{L0}^{{}} \rho_{l} }}\int_{{L_{0} }}^{L} \frac{dL}{L} $$
(10)

where L 0 is initial length of ligament. Here, we suggest that D L0 ≈ L 0, so the equation can be written as

$$ \frac{1}{2}u_{L}^{2} - \frac{1}{2}u_{L0}^{2} = - \frac{4\sigma }{{D_{L0}^{{}} \rho_{l} }}\left[ {\ln \left( L \right) - \ln \left( {L_{0} } \right)} \right] = - \frac{4\sigma }{{D_{L0}^{{}} \rho_{l} }}\ln \left( {\frac{L}{{D_{L0}^{{}} }}} \right) $$
(11)

So the equation can be written as

$$ \frac{1}{2}u_{L}^{2} = \frac{1}{2}u_{L0}^{2} - \frac{4\sigma }{{D_{L0}^{{}} \rho_{l} }}\ln \left( {\frac{L}{{D_{L0}^{{}} }}} \right) $$
(12)

When the length of ligament increases, there is

$$ u_{L}^{{}} = \left[ {u_{L0}^{2} - \frac{8\sigma }{{D_{L0}^{{}} \rho_{l} }}\ln \left( {\frac{L}{{D_{L0}^{{}} }}} \right)} \right]^{0.5} $$
(13)

And when the length of ligament decreases, there is

$$ u_{L}^{{}} = - \left[ {u_{L0}^{2} - \frac{8\sigma }{{D_{L0}^{{}} \rho_{l} }}\ln \left( {\frac{L}{{D_{L0}^{{}} }}} \right)} \right]^{0.5} $$
(14)

So we suggest that the processes of ligament length increase and decrease are symmetrical approximately. Based on Eq. (13) and \( u_{L} = \frac{dL}{dt} \), there is

$$ \frac{dL}{dt} = \left[ {u_{L0}^{2} - \frac{8\sigma }{{D_{L0}^{{}} \rho_{l} }}\ln \left( {\frac{L}{{D_{L0}^{{}} }}} \right)} \right]^{0.5} $$
(15)

The integral equation will be

$$ \int_{{L_{0} }}^{L} {\left[ {u_{L0}^{2} - \frac{8\sigma }{{D_{L0}^{{}} \rho_{l} }}\ln \left( {\frac{L}{{D_{L0}^{{}} }}} \right)} \right]^{ - 0.5} dL} = \int_{{t_{0} }}^{t} {dt} $$
(16)

So the time–length relationship can be written as

$$ t = \int_{{L_{0} }}^{L} {\left[ {u_{L0}^{2} - \frac{8\sigma }{{D_{L0}^{{}} \rho_{l} }}\ln \left( {\frac{L}{{D_{L0}^{{}} }}} \right)} \right]^{ - 0.5} dL} $$
(17)

We set \( x = \ln \left( {\frac{L}{{D_{L0}^{{}} }}} \right) \), so there is dL = D L0 e x dx. Then, Eq. (17) will be

$$ t = \int_{0}^{x} {\left[ {u_{L0}^{2} - \frac{8\sigma }{{D_{L0}^{{}} \rho_{l} }}x} \right]^{ - 0.5} D_{L0}^{{}} e^{x} dx} $$
(18)

So when the length of ligament increases, the final evolution relationship between L and t will be

$$ t = \sqrt {\frac{{\pi D_{L0}^{3} \rho_{l} }}{8\sigma }} \exp \left( {\frac{{We_{{}} }}{8}} \right)\left\{ {erf\left[ {\left( {\frac{{We_{{}} }}{8}} \right)^{0.5} } \right] - erf\left[ {\left( {\frac{{We_{{}} }}{8} - \ln \left( {\frac{L}{{D_{L0}^{{}} }}} \right)} \right)^{0.5} } \right]} \right\} $$
(19)

where the expression of error function is

$$ erf\left( y \right) = \frac{2}{\sqrt \pi }\int_{0}^{y} {e^{{ - t^{2} }} } dt $$
(20)

When \( \frac{{We_{{}} }}{8} = \ln \left( {\frac{L}{{D_{L0}^{{}} }}} \right) \), the length of ligament is the maximum. L m is the maximum length of ligament. t m is the time when the length of ligament is the maximum. The expressions are

$$ L_{m} = D_{L0}^{{}} \exp \left( {\frac{{We_{{}} }}{8}} \right) $$
(21)

and

$$ \begin{gathered} t_{m} = \int_{{L_{0} }}^{{L_{m} }} {\left[ {u_{L0}^{2} - \frac{8\sigma }{{D_{L0}^{{}} \rho_{l} }}\ln \left( {\frac{L}{{D_{L0}^{{}} }}} \right)} \right]^{ - 0.5} dL} \hfill \\ = \sqrt {\frac{{\pi D_{L0}^{3} \rho_{l} }}{8\sigma }} \exp \left( {\frac{{We_{{}} }}{8}} \right)erf\left[ {\left( {\frac{{We_{{}} }}{8}} \right)^{0.5} } \right] \hfill \\ \end{gathered} $$
(22)

So when the length of ligament decreases; finally, the relationship between L and t will be

$$ t = 2t_{m} - \sqrt {\frac{{\pi D_{L0}^{3} \rho_{l} }}{8\sigma }} \exp \left( {\frac{{We_{{}} }}{8}} \right)\left\{ {erf\left[ {\left( {\frac{{We_{{}} }}{8}} \right)^{0.5} } \right] - erf\left[ {\left( {\frac{{We_{{}} }}{8} - \ln \left( {\frac{L}{{D_{L0} }}} \right)} \right)^{0.5} } \right]} \right\} $$
(23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Liu, HF., Tian, XS. et al. Outer ligament-mediated spray formation of annular liquid sheet by an inner round air stream. Exp Fluids 55, 1793 (2014). https://doi.org/10.1007/s00348-014-1793-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1793-6

Keywords

Navigation