Skip to main content
Log in

Defining the roughness sublayer and its turbulence statistics

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The roughness sublayer in a turbulent open-channel flow over a very rough wall is investigated experimentally both within the canopy and above using particle image velocimetry by gaining complete optical access with new methodologies without disturbing the flow. This enabled reliable estimates of the double-averaged mean and turbulence profiles to be obtained by minimizing and quantifying the usual errors introduced by limited temporal and spatial sampling. It is shown, for example, that poor spatial sampling can lead to erroneous vertical profiles in the roughness sublayer. Then, in order to better define and determine the roughness sublayer height, a methodology based on the measured spatial dispersion is proposed which takes into account temporal sampling errors. The results reveal values well below the usual more ad hoc estimates for all statistics. Finally, the double-averaged mean and turbulence statistics in the roughness sublayer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amir M, Castro IP (2011) Turbulence in rough-wall boundary layer. Universality issues. Exp Fluids 51:313–326

    Google Scholar 

  • Antonia RA, Djenidi L (2010) On the outer layer controversy for a turbulent boundary layer over a rough wall. In: IUTAM symposium on the physics of wall-bounded turbulent flows on rough walls, vol 22. IUTAM Bookseries, pp 77–86

  • Bendat JS, Piersol AG (1971) Random data: analysis and measurement procedures, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Birch DM, Morrison JF (2011) Similarity of the streamwise velocity component in very-rough-wall channel flow. J Fluid Mech 668:174–201

    Article  MATH  Google Scholar 

  • Bottema M (1996) Roughness parameters over regular rough surfaces: experimental requirements and model validation. J Wind Eng Ind Aero 64:249–265

    Article  Google Scholar 

  • Bradshaw P (2000) A note on “critical roughness height” and “transitional roughness”. Phys Fluids 12:1611–1614

    Article  MathSciNet  MATH  Google Scholar 

  • Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35:469–496

    Article  Google Scholar 

  • Castro IP (2007) Rough-wall boundary layers: mean flow universality. J Fluid Mech 585:469–485

    Article  MATH  Google Scholar 

  • Castro IP, Cheng H, Reynolds R (2006) Turbulence over urban-type roughness: deductions from wind-tunnel measurements. Bound Layer Meteorol 118:109–131

    Article  Google Scholar 

  • Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Bound Layer Meteorol 104:229–259

    Article  Google Scholar 

  • Christensen KT (2004) The influence of peak-locking errors on turbulence statistics computed from piv ensembles. Exp Fluids 36:484–497

    Article  Google Scholar 

  • Coceal O, Belcher SE (2004) A canopy model of mean winds through urban areas. Q J R Meteorol Soc 130:1349–1372

    Article  Google Scholar 

  • Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Bound Layer Meteorol 121:491–519

    Article  Google Scholar 

  • Fincham A, Delerce G (2000) Advanced optimization of correlation imaging velocimetry algorithms. Exp Fluids 29:S13–S22

    Google Scholar 

  • Fincham A, Spedding GR (1997) Low cost, high resolution dpiv for measurements of turbulent fluid flow. Exp Fluids 23:449–462

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571

    Article  Google Scholar 

  • Flack KA, Schultz MP, Shapiro TA (2005) Experimental support for townsend’s reynolds number similarity hypothesis on rough walls. Phys Fluids 17(3):035102.1–035102.9

    Article  Google Scholar 

  • Florens E (2010) Couche limite turbulente dans les écoulements à surface libre: étude expérimentale d’effets de macro-rugosités. PhD thesis, Université de Toulouse, France

  • Flores O, Jiménez J (2006) Effect of wall-bounded disturbances on turbulent channel flows. J Fluid Mech 566:357–376

    Article  MATH  Google Scholar 

  • Hong J, Katz J, Schultz MP (2011) Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J Fluid Mech 667:1–37

    Article  MATH  Google Scholar 

  • Jiménez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36:173–196

    Article  Google Scholar 

  • Macdonald RW (2000) Modelling the mean velocity profile in the urban canopy layer. Bound Layer Meteorol 97:25–45

    Article  Google Scholar 

  • Manes C, Pokrajac D, McEwan I (2007) Double-averaged open-channel flows with small relative submergence. J Hydr Eng 133(8):896–904

    Article  Google Scholar 

  • Mignot E, Barthelemy E, Hurther D (2009) Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J Fluid Mech 618:279–303

    Article  MATH  Google Scholar 

  • Nepf H, Vivoni ER (2000) Flow structure in depth-limited, vegetated flow. J Geophys Res 105:28547–28557

    Article  Google Scholar 

  • Nezu I, Nakagawa H (1993) Turbulence in open-channel flows. IAHR Monograph series. A.A. Balkema, Rotterdam

    Google Scholar 

  • Nezu I, Rodi W (1985) Experimental study on secondary currents in open channel flow. In: Proceedings of 21st congress of IAHR, Melbourne, vol 2, pp 115–119

  • Nikora V, McEwan I, McLean S, Coleman S, Pokrajak D, Walters R (2007) Double-averaging concept for rough-bed open-channel and overland flows: theoretical background. J Hydr Eng 133(8):873–883

    Article  Google Scholar 

  • Nikora VI, Goring DG, McEwan I, Griffiths G (2001) Spatially averaged open-channel flow over rough bed. J Hydr Eng 126(2):123–133

    Article  Google Scholar 

  • Poggi D, Katul GG, Albertson JD (2004a) A note on the contribution of dispersive fluxes to momentum transfer within canopies. Bound Layer Meteorol 111:615–621

    Article  Google Scholar 

  • Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004b) The effect of vegetation density on canopy sub-layer turbulence. Bound Layer Meteorol 111:565–587

    Article  Google Scholar 

  • Pokrajac D, Campbell LJ, Nikora VI, Manes C, McEwan IK (2007) Quadrant analysis of persistent spatial velocity perturbations over square-bar roughness. Exp Fluids 42:413–423

    Article  Google Scholar 

  • Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Bound Layer Meteorol 61(1):47–64

    Google Scholar 

  • Raupach MR, Thom AS, Edwards I (1980) A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Bound Layer Meteorol 18:373–397

    Article  Google Scholar 

  • Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44(1):1–25

    Article  Google Scholar 

  • Reynolds RT, Castro IP (2008) Measurements in a urban-type boundary layer. Exp Fluids 45:141–156

    Article  Google Scholar 

  • Rotach MW (1999) On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos Environ 29:4001–4008

    Article  Google Scholar 

  • Rotach MW (2001) Simulation of urban-scale dispersion using a lagrangian stochastic dispersion model. Bound Layer Meteorol 99:379–410

    Article  Google Scholar 

  • Tomas S, Eiff OS, Masson V (2011) Experimental investigation of turbulent momentum transfer in a neutral boundary layer over a rough surface. Bound Layer Meteorol 138(3):385–411

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Hydralab IV project funded by the European Commission (Grant Number 261520). Help in conceiving and setting up the optical experiments is gratefully acknowledged to S. Cazin and E. Cid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Eiff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florens, E., Eiff, O. & Moulin, F. Defining the roughness sublayer and its turbulence statistics. Exp Fluids 54, 1500 (2013). https://doi.org/10.1007/s00348-013-1500-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1500-z

Keywords

Navigation