Skip to main content
Log in

Tomographic reconstruction of heat release rate perturbations induced by helical modes in turbulent swirl flames

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Swirl flows with vortex breakdown are widely used in industrial combustion systems for flame stabilization. This type of flow is known to sustain a hydrodynamic instability with a rotating helical structure, one common manifestation of it being the precessing vortex core. The role of this unsteady flow mode in combustion is not well understood, and its interaction with combustion instabilities and flame stabilization remains unclear. It is therefore important to assess the structure of the perturbation in the flame that is induced by this helical mode. Based on principles of tomographic reconstruction, a method is presented to determine the 3-D distribution of the heat release rate perturbation associated with the helical mode. Since this flow instability is rotating, a phase-resolved sequence of projection images of light emitted from the flame is identical to the Radon transform of the light intensity distribution in the combustor volume and thus can be used for tomographic reconstruction. This is achieved with one stationary camera only, a vast reduction in experimental and hardware requirements compared to a multi-camera setup or camera repositioning, which is typically required for tomographic reconstruction. Different approaches to extract the coherent part of the oscillation from the images are discussed. Two novel tomographic reconstruction algorithms specifically tailored to the structure of the heat release rate perturbations related to the helical mode are derived. The reconstruction techniques are first applied to an artificial field to illustrate the accuracy. High-speed imaging data acquired in a turbulent swirl-stabilized combustor setup with strong helical mode oscillations are then used to reconstruct the 3-D structure of the associated perturbation in the flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th edn. Dover, New York

    Google Scholar 

  • Anacleto PM, Fernandes EC, Heitor MV, Shtork SI (2003) Swirl flow structure and flame characteristics in a model lean premixed combustor. Combust Sci Technol 175(8):1369–1388

    Article  Google Scholar 

  • Anikin N, Suntz R, Bockhorn H (2010) Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames. Appl Phys B 100:675–694

    Article  Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  • Cala CE, Fernandes EC, Heitor MV, Shtork SI (2006) Coherent structures in unsteady swirling jet flow. Exp Fluids 40:267–276

    Article  Google Scholar 

  • Chomaz JM (2005) Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu Rev Fluid Mech 37:357–392

    Article  MathSciNet  Google Scholar 

  • Deans SR (2007) The Radon transform and some of its applications. Dover, New York

    MATH  Google Scholar 

  • Duwig C, Iudiciani P (2010) Extended proper orthogonal decomposition for analysis of unsteady flames. Flow Turbul Combust 84:25–47

    Article  MATH  Google Scholar 

  • Fernandes EC, Heitor MV, Shtork SI (2006) An analysis of unsteady highly turbulent swirling flow in a model vortex combustor. Exp Fluids 40:177–187

    Article  Google Scholar 

  • Floyd J, Kempf AM (2011) Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner. Proc Combust Inst 33:751–758

    Article  Google Scholar 

  • Floyd J, Geipel P, Kempf AM (2011) Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame. Combust Flame 158:376–391

    Article  Google Scholar 

  • Fokaides P, Weiß M, Kern M, Zarzalis N (2009) Experimental and numerical investigation of swirl induced self-excited instabilities at the vicinity of an airblast nozzle. Flow Turbul Combust 83:511–533

    Article  MATH  Google Scholar 

  • Gallaire F, Ruith M, Meiburg E, Chomaz JM, Huerre P (2006) Spiral vortex breakdown as a global mode. J Fluid Mech 549:71–80

    Article  Google Scholar 

  • Galley D, Ducruix S, Lacas F, Veynante D (2011) Mixing and stabilization study of a partially premixed swirling flame using laser induced fluorescence. Combust Flame 158:155–171

    Article  Google Scholar 

  • García-Villalba M, Fröhlich J, Rodi W (2007) Numerical simulations of isothermal flow in a swirl burner. J Eng Gas Turbines Power 129(2):377–386

    Article  Google Scholar 

  • Gupta AK, Lilley DG, Syred N (1984) Swirl flows. Abacus Press, Tunbridge Wells

    Google Scholar 

  • Güthe F, Schuermans B (2007) Phase-locking in post-processing for pulsating flames. Meas Sci Technol 18:3036–3042

    Article  Google Scholar 

  • Hansen PC, Saxild-Hansen M (2012) AIR Tools—a MATLAB package of algebraic iterative reconstruction methods. J Comput Appl Math 236(8):2167–2178

    Article  MathSciNet  MATH  Google Scholar 

  • Huang Y, Yang V (2009) Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog Energy Combust Sci 35(4):293–364

    Article  Google Scholar 

  • Huerre P, Monkewitz PA (1990) Local and global instabilities in spatially developing flows. Annu Rev Fluid Mech 22:473–537

    Article  MathSciNet  Google Scholar 

  • Ishino Y, Ohiwa N (2005) Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame. JSME Ser B 48(1):34–40

    Article  Google Scholar 

  • Iudiciani P, Duwig C (2011) Large eddy simulation of the sensitivity of vortex breakdown and flame stabilisation to axial forcing. Flow Turbul Combust 86:639–666

    Article  MATH  Google Scholar 

  • Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, New York

    MATH  Google Scholar 

  • Lacarelle A, Luchtenburg DM, Bothien MR, Noack BR, Paschereit CO (2010) Combination of image postprocessing tools to identify coherent structures of premixed flames. AIAA J 48(8):1708–1720

    Article  Google Scholar 

  • Lefebvre A (1998) Gas Turbine Combustion, 2nd edn. Taylor and Francis, London

    Google Scholar 

  • Liang H, Maxworthy T (2005) An experimental investigation of swirling jets. J Fluid Mech 525:115–159

    Article  MATH  Google Scholar 

  • Lucca-Negro O, O’Doherty T (2001) Vortex breakdown: a review. Prog Energy Combust Sci 27(4):431–481

    Article  Google Scholar 

  • Natterer F (1999) Numerical methods in tomography. Acta Numer 8:107–141

    Article  MathSciNet  Google Scholar 

  • Natterer F (2001) The mathematics of computerized tomography. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Oberleithner K, Sieber M, Nayeri CN, Paschereit CO, Petz C, Hege HC, Noack BR, Wygnanski I (2011) Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J Fluid Mech 679:383–414

    Article  MATH  Google Scholar 

  • O’Connor J, Lieuwen T (2012) Recirculation zone dynamics of a transversely excited swirl flow and flame. Phys Fluids 24:075107 (30 pp)

    Google Scholar 

  • Palies P, Durox D, Schuller T, Candel S (2010) The combined dynamics of swirler and turbulent premixed swirling flames. Combust Flame 157(9):1698–1717

    Article  Google Scholar 

  • Palies P, Durox D, Schuller T, Candel S (2011) Experimental study on the effect of swirler geometry and swirl number on flame describing functions. Combust Sci Technol 183(7):704–717

    Article  Google Scholar 

  • Palies P, Schuller T, Durox D, Gicquel L, Candel S (2011) Acoustically perturbed turbulent premixed swirling flames. Phys Fluids 23:037101 (15 pp)

    Google Scholar 

  • Paschereit CO, Gutmark E, Weisenstein W (2000) Excitation of thermoacoustic instabilities by interaction of acoustics and unstable swirling flow. AIAA J 38(6):1025–1034

    Article  Google Scholar 

  • Rowley CW, Mezić I, Bagheri S, Schlattner P, Henningson DS (2009) Spectral analysis of nonlinear flows. J Fluid Mech 641:115–127

    Article  MathSciNet  MATH  Google Scholar 

  • Ruith MR, Chen P, Meiburg E, Maxworthy T (2003) Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J Fluid Mech 486:331–378

    Article  MathSciNet  MATH  Google Scholar 

  • Schimek S, Moeck JP, Paschereit CO (2011) An experimental investigation of the nonlinear response of an atmospheric swirl-stabilized premixed flame. J Eng Gas Turbines Power 133:101502 (7 pp)

    Google Scholar 

  • Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28

    Article  MathSciNet  MATH  Google Scholar 

  • Schmid PJ, Henningson DS (2001) Stability and transition in shear flows. Springer, New York

    Book  MATH  Google Scholar 

  • Schmid PJ, Li L, Juniper MP, Pust O (2011) Applications of the dynamic mode decomposition. Theor Comput Fluid Dyn 25(1–4):249–259

    Article  Google Scholar 

  • Stöhr M, Sadanandan R, Meier W (2011) Phase-resolved characterization of vortex–flame interaction in a turbulent swirl flame. Exp Fluids 51(4):1153–1167

    Article  Google Scholar 

  • Stöhr M, Boxx I, Carter CD, Meier W (2012) Experimental study of vortex–flame interaction in a gas turbine model combustor. Combust Flame 159:2636–2649

    Article  Google Scholar 

  • Syred N (2006) A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog Energy Combust Sci 32(2):93–161

    Article  Google Scholar 

  • Upton TD, Verhoeven DD, Hudgins DE (2011) High-resolution computed tomography of a turbulent reacting flow. Exp Fluids 50:125–134

    Article  Google Scholar 

  • van Oudheusden BW, Scarano F, van Hinsberg NP, Watt DW (2005) Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp Fluids 39:86–98

    Article  Google Scholar 

  • Verhoeven D (1993) Limited-data computed tomography algorithms for the physical sciences. Appl Opt 32(20):3736–3754

    Article  Google Scholar 

  • Worth NA, Dawson JR (2013) Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames. Meas Sci Technol 24:024013 (11 pp)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Agence Nationale de la Recherche, contract N° ANR-08-BLAN-0027-01, the Délégation Générale pour l’Armement, and by Snecma (Safran Group).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas P. Moeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeck, J.P., Bourgouin, JF., Durox, D. et al. Tomographic reconstruction of heat release rate perturbations induced by helical modes in turbulent swirl flames. Exp Fluids 54, 1498 (2013). https://doi.org/10.1007/s00348-013-1498-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1498-2

Keywords

Navigation