Skip to main content
Log in

Laminar flow control with distributed surface actuation: damping Tollmien-Schlichting waves with active surface displacement

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Control strategies for laminar flow control above an unswept wing are investigated. An actuation method based on a flexible membrane displaced by multiple piezo-polymer composite elements is developed for wind tunnel experiments. A model predictive control algorithm is applied to control the multi-bar actuator. The direct negative superposition method of damping Tollmien–Schlichting waves is compared to a biomimetic approach imitating the damping mechanisms of a compliant skin. In both cases, a model predictive control algorithm is applied to control the multi-bar actuator segments. For the biomimetic approach, reduced, real-time solvable models of compliant surfaces are developed and parametrized by direct optimization and according to numerically generated optimal wall properties. Damping results of up to 85 % RMS value are achieved, shifting the onset of transition about 100 mm downstream with a single actuation membrane. Additional experiments with cascaded multiple membranes show the potential for a further shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. For two scalar discrete time series x 1, x 2 we define the fit as \(1-(\|x_1-x_2 \| / \|x_2-\hbox{mean}(x_2)\|)\)

References

  • Åström KJ (1980) Maximum likelihood and prediction error methods. Automatica 16(5):551–574

    Article  MATH  Google Scholar 

  • Ahuja S, Rowley C (2010) Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators. J Fluid Mech 645:447–478

    Article  MathSciNet  MATH  Google Scholar 

  • Bagheri S, Henningson D (2011) Transition delay using control theory. Philos Trans R Soc A Math Phys Eng Sci 369(1940):1365

    Article  MathSciNet  MATH  Google Scholar 

  • Bagheri S, Brandt L, Henningson DS (2009) Input-output analysis, model reduction and control of the flat-plate boundary layer. J Fluid Mech 620:263–298

    Article  MathSciNet  MATH  Google Scholar 

  • Baumann M, Nitsche W (1996) Investigation of active control of Tollmien-Schlichting waves on a wing. In: Henkes R, van Ingen J (eds) Transitional boundary layers in Aeronautics. KNAW, Amsterdam, pp 89–90

    Google Scholar 

  • Bewley T, Liu S (1998) Optimal and robust control and estimation of linear paths to transition. J Fluid Mech 365:305–349

    Article  MathSciNet  MATH  Google Scholar 

  • Carpenter P, Garrad A (1985) The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities. J Fluid Mech 155:465–510

    Google Scholar 

  • Carpenter P, Morris P (1990) The effect of anisotropic wall compliance on boundary-layer stability and transition. J Fluid Mech 218:171–223

    Article  MATH  Google Scholar 

  • Chughtai S, Werner H (2012) Modeling and distributed control of transition in plane poiseuille flow. IEEE Trans Control Syst Tech 20(3):755–762

    Article  Google Scholar 

  • Davies C, Carpenter P (1997) Numerical simulation of the evolution of Tollmien-Schlichting waves over finite compliant panels. J Fluid Mech 335:361–392

    Article  MathSciNet  MATH  Google Scholar 

  • Evert F, Ronneberger D, Grosche FR (2000) Application of linear and nonlinear adaptive filters for the compensation of disturbances in the laminar boundary layer. ZAMM 80:85–88

    Article  Google Scholar 

  • Fukagata K, Kern S, Chatelain P, Koumoutsakos P, Kasagi N (2008) Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J Turbul 9:1–17

    Article  Google Scholar 

  • Goldin N, King R (2012) Learning from dolphin skin—drag reduction by active delay of transition: flow control by distributed wall actuation. In: Tropea C, Bleckmann H (eds) Nature-inspired fluid mechanics, notes on numerical fluid mechanics and multidisciplinary design, vol 119. Springer, New York, pp 207–222

    Chapter  Google Scholar 

  • Gray J (1936) Studies in animal locomotion: VI. The propulsive powers of the dolphin. J Exp Biol 13:192–199

    Google Scholar 

  • Gad-el Hak M (2000) Flow control: passive, active, and reactive flow management. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Haller D (2011) Piezo-polymer-composite actuators—design, nonlinear characterization and application for active cancellation of flow instabilities. PhD thesis, IMTEK, Universität Freiburg

  • Haller D, Pätzold A, Losse N, Neiss S, Peltzer I, Nitsche W, King R, Woias P (2011) Piezo-polymer-composite unimorph actuators for active cancellation of flow instabilities across airfoils. J Intel Mat Syst Str 22(5):465–478. doi:10.1177/1045,389X10395,794

    Article  Google Scholar 

  • Joshi S, Speyer J, Kim J (1997) A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow. J Fluid Mech 332:157–184

    MATH  Google Scholar 

  • King R, Aleksic K, Gelbert G, Losse N, Muminovic R, Brunn A, Nitsche W, Bothien M, Moeck J, Paschereit C, Noack BR, Rist U, Zengl M (2008) Model predictive flow control. In: 4th AIAA flow control conference, AIAA Paper 2008-3975

  • Kramer M (1960) The dolphins’ secret. New Sci 7:1118–1120

    Google Scholar 

  • Li Y, Gaster M (2006) Active control of boundary-layer instabilities. J Fluid Mech 550:185–205

    Article  MATH  Google Scholar 

  • Lucey A, Carpenter P (1995) Boundary layer instability over compliant walls: comparison between theory and experiment. Phys Fluids 7:2355–2363

    Article  MathSciNet  Google Scholar 

  • Maciejowski JM (2000) Predictive control with constraints. Prentice Hall, Harlow

    Google Scholar 

  • Pavlov V (2006) Dolphin skin as a natural anisotropic compliant wall. Bioinsp Biomim 1:31–40

    Article  Google Scholar 

  • Sturzebecher D, Nitsche W (2003) Active cancellation of tollmien-schlichting instabilities on a wing using multi-channel sensor actuator system. Int J Heat Fluid Flow 24(4):572–583

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for funding this research as part of the SPP 1207 “Nature-Inspired Fluid Mechanics.” It is an adapted version of the SPP’s final report, published in Goldin and King (2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolas Goldin.

Additional information

This article is part of the collection Topics in Flow Control. Guest Editors J. P. Bonnet and L. Cattafesta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldin, N., King, R., Pätzold, A. et al. Laminar flow control with distributed surface actuation: damping Tollmien-Schlichting waves with active surface displacement. Exp Fluids 54, 1478 (2013). https://doi.org/10.1007/s00348-013-1478-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1478-6

Keywords

Navigation