Skip to main content
Log in

3D Velocimetry and droplet sizing in the Ranque–Hilsch vortex tube

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The Ranque–Hilsch vortex tube (RHVT) is a device currently used to generate local cooling. In general, the fluid that is injected into the RHVT is a single-phase gas. In this study, however, we have added a dispersed phase (water droplets) to the gas (nitrogen). By means of phase Doppler particle analysis, three velocity components, their higher order moments, and sizes of droplets were measured, showing high intensity velocity fluctuations in the core region of the main vortex. The frequency spectrum of the velocity is presented and reveals that wobbling of the vortex axis is the cause of the high intensity fluctuations. The wobbling motion reduces the influence of the droplet size on the radial droplet velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • Ahlborn BK, Groves S (1997) Secondary flow in a vortex tube. Fluid Dyn Res 21:73–86

    Article  Google Scholar 

  • Ahlborn BK, Keller JU, Staudt R, Treitz G, Rebhan E (1994) Limits of temperature separation in a vortex tube. J Phys D Appl Phys 27:480–488

    Article  Google Scholar 

  • AirTx (2012) http://www.airtx.com/vortex-tubes

  • Albrecht HE (2003) Laser doppler and phase doppler measurement techniques. Springer, Berlin

    Google Scholar 

  • Aljuwayhel NF, Nellis GF, Klein SA (2005) Parametric and internal study of the vortex tube using a CDF model. Int J Refrig 28:442–450

    Article  Google Scholar 

  • Bachalo WD, Houser MJ (1984) Phase/doppler spray analyzer for simulataneous measurements of drop size and velocity distributions. Opt Eng 1:428–444

    Google Scholar 

  • Barnett DO, Bentley HT (1974) Statistical bias of individual realization laser velocimeters. Proc Second Int Workshop Laser Velocim 1:428–444

    Google Scholar 

  • Bird BR, Stewart WE, Lightfoot EN (2007) Transport phenomena, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Deissler RG, Perlmutter M (1960) Analysis of the flow and energy separation in a turbulent vortex. Int J Heat Mass Trans 1:173–191

    Article  Google Scholar 

  • Den Toonder JMJ, Nieuwstadt FTM (1997) Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys Fluids 9(11):3398–3409

    Article  Google Scholar 

  • Durst F, Kikura H, Lekakis I, Jovanovic J, Ye Q (1996) Wall shear stress determination from near-wall mean velocity data in turbulent pipe and channel flows. Exp Fluids 20:417–428

    Article  Google Scholar 

  • Eggels JGM, Unger F, Weiss MH, Westerweel J, Adrian RJ, Friedrich R, Nieuwstadt FTM (1994) Fully developed turbulent pipe flow, a comparison between direct numerical simulation and experiment. J Fluid Mech 268:175–209

    Article  Google Scholar 

  • Eiamsa-ard S, Promvonge P (2008) Review of Ranque–Hilsch effects in vortex tubes. Renew Sust Energ Rev 12:1822–1842

    Article  Google Scholar 

  • Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52:309–329

    Article  Google Scholar 

  • Exair (2012) http://www.exair.com

  • Fukumoto Y, Okulov VL (2005) The velocity field induced by a helical vortex tube. Phys Fluids 17(10):107101

    Article  MathSciNet  Google Scholar 

  • Gao CM (2005) Experimental study on the Ranque–Hilsch vortex tube. PhD thesis, Eindhoven University of Technology

  • Gao CM, Bosschaart KJ, Zeegers JCH, de Waele ATM (2005) Experimental study on a simple Ranque–Hilsch vortex tube. Cryogenics 45:173–183

    Article  Google Scholar 

  • Gutsol A (1997) The Ranque effect. Phys Uspeki 40(6):639–658

    Article  Google Scholar 

  • Herrin JL, Dutton JC (1993) An investigation of LDV velocity bias correction techniques for high speed separated flows. Exp Fluids 14:354–363

    Google Scholar 

  • Hilsch R (1947) The use of the expansion of gases in a centrifugal field as cooling process. Rev Sci Instr 18:108–113

    Article  Google Scholar 

  • Hoesel W, Rodi W (1976) New biasing elimination method for laser doppler velocimeter counter processing. Rev Sci Instr 48(7):910–919

    Article  Google Scholar 

  • IJzermans RHA, Hagmeijer R, van Langen P J (2007) Accumulation of heavy particles around a helical vortex filament. Phys Fluids 19:107102

    Article  Google Scholar 

  • ITW-Vortec (2012) http://www.vortec.nl

  • Kuerten JGM, van Esch BPM, van Kemenade HP, Brouwers JJH (2007) The effect of turbulence on the efficiency of the rotational phase separator. Int J Heat Fluid Fl 28:630–637

    Article  Google Scholar 

  • Kurosaka M (1982) Acoustic streaming in swirling flow and the Ranque Hilsch effect. J Fluid Mech 124:139–172

    Article  Google Scholar 

  • Lamb H (1932) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Liew R, Zeegers JCH, Kuerten JGM, Michalek WR (2011) Droplet behaviour in a Ranque–Hilsch vortex tube. J Phys Conf Ser 318:052013

    Article  Google Scholar 

  • Liew R, Zeegers JCH, Kuerten JGM, Michalek WR (2012) Maxwell’s Demon in the Ranque–Hilsch Vortex Tube. Phys Rev Lett 109:054503

    Article  Google Scholar 

  • Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–839

    Article  Google Scholar 

  • McLaughlin DK, Tiederman WG (1972) Biasing correction for individual realization of laser anemometer measurements in turbulent flows. Phys Fluids 16(12):2082–2088

    Article  Google Scholar 

  • Nimbalkar SU, Muller MR (2009) An experimental investigation of the optimum geometry for the cold end orifice. Appl Therm Eng 29:509–514

    Article  Google Scholar 

  • Ranque GJ (1933) Experiences sur la detente avec production simultanees d’un echappement d’air chaud et echappement d’air froid. J Phys Radium 7(4):112–4–S–115

    Google Scholar 

  • Schiller L, Naumann AZ (1933) über die grundlegenden berechnungen bei der schwerkraftaufbereitung. Ver Deut Ing 77:318–320

    Google Scholar 

  • Takahama H, Yokosawa H (1981) Energy separation in vortex tubes with a divergent chamber. J Heat Trans 103(2):196–203

    Article  Google Scholar 

  • TSI Inc. (2012) http://www.tsi.com

  • Van Esch BPM, Kuerten JGM (2008) DNS of the flow of particles in rotating pipe flow. J Turbul 9(4):1–17

    Google Scholar 

  • Walpot RJE, van der Geld CWM, Kuerten JGM (2007) Determination of the coeffcients of langevin models for inhomogeneous turbulent flows by 3D PTV and DNS. Phys Fluids 19:045,102

    Article  Google Scholar 

  • Westerweel J, Draad AA, Hoeven JGT, Oord J (1996) Measurement of fully-developed turbulent pipe flow with digital particle image velocimetry. Exp Fluids 20:165–177

    Article  Google Scholar 

  • Zhang Z (2004) Optical guidelines and signal quality for LDA applications in circular pipes. Exp Fluids 37:29–39

    Article  Google Scholar 

  • Zhang Z, Eisele K (1996) The effect of astigmatism due to beam refractions on the formation of the measurement volume in LDA measurements. Exp Fluids 20:466–471

    Article  Google Scholar 

  • Zhang Z, Eisele K (1998) Further considerations of the astigmatism error associated with off-axis alignment of an LDA-probe. Exp Fluids 24:83–89

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank R. Hagmeijer for his useful comments regarding vortex wobbling and H.B.M. Manders and J.M. van der Veen for their technical support. This research is supported by the Dutch Technology Foundation STW, which is the applied science division of NWO, and the Technology Programme of the Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Liew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liew, R., Zeegers, J.C.H., Kuerten, J.G.M. et al. 3D Velocimetry and droplet sizing in the Ranque–Hilsch vortex tube. Exp Fluids 54, 1416 (2013). https://doi.org/10.1007/s00348-012-1416-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-012-1416-z

Keywords

Navigation