Skip to main content
Log in

Surface plasmon resonance reflectance imaging technique for near-field (~100 nm) fluidic characterization

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR) reflectance imaging technique is devised as a label-free visualization tools to characterize near-field (100 nm) fluidic transport properties. The key idea is that the SPR reflectance intensity varies with the near-field refractive index (RI) of the test fluid, which in turn depends on the micro/nano-fluidic scalar properties, such as concentrations, temperatures, and phases. The SPR sensor techniques have been widely used in many different areas, particularly in the biomedical and biophysical societies. While flow visualization techniques based on RI detection have been extensively well documented (Merzkirch 1987), the use of SPR imaging for fluidic applications has been introduced only recently since the author’s group presented a series of related studies in the past few years. The primary goal of this review article is two-fold: (1) Introduction of the working principles of the SPR imaging as a fluidic sensor, and (2) Presentation of example measurement applications for various fluidic scalar properties using the SPR imaging sensor technique. Section 1 summarizes the history and the basic principle of SPR by focusing on the Kretschmann’s theory and Sect. 2 describes the laboratory SPR imaging system specifically designed for fluidic applications. Section 3 presents the optical and material properties that affect the SPR measurement capabilities and sensitivity. Section 4 presents example applications of the implemented SPR for different near-field characterization problems, including (1) micromixing concentration field, (2) convective/diffusion of salinity distributions, (3) full-field thermometry, and (4) fingerprinting of crystallized nanofluidic self assembly. Sections 5 and 6 discuss the spatial measurement resolutions of the SPR imaging technique and the overall measurement sensitivities, respectively. Section 7 presents a few suggestions to further enhance the SPR measurement accuracy particularly for near-field fluidic characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen JS, Hallinan KP, Lekan J (1998) A study of the fundamental operations of a capillary driven heat transfer device in both normal and low gravity: part 1. Liquid slug formation in low gravity. AIP Conf Proc 420:471–478

    Article  Google Scholar 

  • Belda R, Herraez JV, Diez O (2005) A study of the refractive index and surface tension synergy of the binary water/ethanol: influence of concentration. Phys Chem Liq 43:91–101

    Article  Google Scholar 

  • Berger CEH, Kooyman RPH, Greve J (1994) Resolution in surface plasmon microscopy. Rev Sci Instrum 65:2829–2836

    Article  Google Scholar 

  • Bigioni TP, Lin XM, Nguyen TT, Corwin EI, Witten TA, Jaeger HM (2006) Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5:265–270

    Article  Google Scholar 

  • Born M, Wolf E (2003) Principles of optics, 7th edn. Cambridge Press, Cambridge

    Google Scholar 

  • Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63

    Article  Google Scholar 

  • Chadwick B, Gal M (1993) An optical temperature sensor using surface plasmons. Jpn J Appl Phys 32:2716–2717

    Article  Google Scholar 

  • Chiang HP, Leung PT, Tse WS (1998) The surface plasmon enhancement effect on absorbed molecules at elevated temperatures. J Chem Phys 108:2659–2660

    Article  Google Scholar 

  • Chiang H-P, Yeh H-T, Chen C-M, Wu J-C, Su S-Y, Chang R, Wu Y-J, Tsai DP, Jen SU, Leung PT (2004) Surface plasmon resonance monitoring of temperature via phase measurement. Opt Commun 241:409–418

    Article  Google Scholar 

  • Chon CH, Paik SW, Tipton J, Kihm KD (2007) Evaporation and dryout characteristics of nanofluids under constant voltage heating by microfabricated heater array. Langmuir 23:2953–2960

    Article  Google Scholar 

  • Cristofolini L (2007) Surface plasmon resonance calculator using a Matlab procedure. http://www.mathworks.com/matlabcentral/fileexchange/13700

  • Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829

    Article  Google Scholar 

  • Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Contact line deposits in an evaporating drop. Phys Rev E 62:756–765

    Article  Google Scholar 

  • Duggal R, Hussain F, Pasquali M (2006) Self-assembly of single-walled carbon nanotubes into a sheet by drop drying. Adv Mater 18:29–34

    Article  Google Scholar 

  • Eckert ERG, Goldstein RJ (1970) Measurements in heat transfer. McGraw-Hill, New York

    Google Scholar 

  • Englebienne P, Hoonacker AV, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy 17:255–273

    Google Scholar 

  • Fen F, Stebe KJ (2004) Assembly of colloidal particles by evaporation on surfaces with patterned hydrophobicity. Langmuir 20:3062–3067

    Article  Google Scholar 

  • Ferrell TL, Callcott TA, Warmack RJ (1985) Plasmons and surfaces. Am Sci 73:344–353

    Google Scholar 

  • Fu E, Chinowsky T, Foley J, Weinstein J, Yager P (2004) Characterization of a wavelength-tunable surface plasmon resonance microscope. Rev Sci Instrum 75:2300–2304

    Article  Google Scholar 

  • Giebel KF, Bechinger C, Herminghaus S, Riedel M, Leiderer U, Weiland U, Bastmeyer M (1999) Imaging of cell/substrate constants of living cells with surface plasmon resonance of microscopy. Biophys J 76:509–516

    Article  Google Scholar 

  • Gryczynski I, Malicka J, Gryczynski Z, Nowaczyk K, Lakowicz JR (2004) Ultraviolet surface plasmon-coupled emission using thin aluminum films. Anal Chem 76:4076–4081

    Article  Google Scholar 

  • Gu ZZ, Yu YH, Zhang H, Chen H, Lu Z, Fujishima A, Sato O (2005) Self-assembly of monodisperse spheres on substrates with different wettability. Appl Phys A 81:47–49

    Article  Google Scholar 

  • Haw MD, Gillie M, Poon WC (2002) Effects of phase behavior on the drying of colloidal suspension. Langmuir 18:1626–1633

    Article  Google Scholar 

  • Hawes EA, Hastings JT, Crofcheck C, Menguc MP (2007) Spectrally selective heating of nanosized particles by surface plasmon resonance. J Quantum Spectrosc Radiat A 104:199–207

    Article  Google Scholar 

  • Hecht E (2002) Optics, 4th edn. Addison and Wesley, New York

    Google Scholar 

  • Ho HP, Lam WW (2003) Application of differential phase measurement technique to surface plasmon resonance sensors. Sensors Actuators B 96:554–559

    Article  Google Scholar 

  • Hong SW, Xu J, Lin Z (2006) Template-assisted formation of gradient concentric goldrings. Nano Lett 6:2949–2954

    Article  Google Scholar 

  • Hornauer D-L (1976) Light scattering experiments on silver films of different roughness using surface plasmon excitation. Opt Commun 16:76–79

    Article  Google Scholar 

  • Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring decompositions. J Phys Chem B 110:7090–7094

    Article  Google Scholar 

  • Hutter E, Fendler JH (2004) Exploitation of localized surface plamon resonance. Adv Mater 16:1685–1706

    Article  Google Scholar 

  • Inagaki T, Kagami K, Arakawa ET (1981) Photoacoustic observation of nonradiative decay of surface plasmons in silver. Phys Rev B 24:3644–3646

    Article  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, San Diego

    Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  Google Scholar 

  • Joseph DD (1990) Fluid dynamics of two miscible liquids with diffusion and gradient stresses. Eur J Mech B 9:565–596

    Google Scholar 

  • Kihm KD (2008) Near-field and label-free imaging by surface plasmon resonance (SPR). In: Thirteenth international symposium on flow visualization. Paper No. IL2: Nice, France

  • Kihm KD, Pratt DM (1999) Thickness and slope measurements of evaporative thin liquid film. J Heat Transf 121, No. 3: JHT Heat Transfer Gallery-Special Insert

  • Kihm KD, Banerjee A, Choi CK, Takagi T (2004) Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM). Exp Fluids 37:811–824

    Article  Google Scholar 

  • Kim IT, Kihm KD (2006) Label-free visualization of microfluidic mixture concentration fields using a surface plasmon resonance (SPR) reflectance imaging. Exp Fluids 41:905–916

    Article  Google Scholar 

  • Kim IT, Kihm KD (2007a) Real-time and full-field detection of near wall Salinity using surface plasmon (SPR) reflectance. Anal Chem 79:5418–5423

    Article  Google Scholar 

  • Kim IT, Kihm KD (2007b) Label-free imaging of temperature fields using surface plasmon resonance (SPR) reflectance. Opt Lett 32(23):3456–3458

    Article  Google Scholar 

  • Kim IT, Kihm KD (2007c) Surface plasmon resonance (SPR) reflectance imaging: a label-free/real-time mapping of microscale mixture concentration fields (water+ethanol). J Heat Transf 129:128–129

    Google Scholar 

  • Kim IT, Kihm KD (2007d) Label-free imaging of microfluidic concentration and temperature fields using surface plasmon resonance (SPR) reflectance. In: Proceedings of 18th international symposium on transport phenomena. Paper No. ISTP18-364 Daejeon, Korea

  • Kim IT, Kihm KD (2008) Label-free and near-field mapping of molecular diffusion (saline solution/water) using surface plasmon resonance (SPR) refractive index field mapping. J Heat Transf 130. Paper No. 080906

  • Kim IT, Kihm KD (2009) Unveiling hidden complex cavities formed during nanocrystalline self assembly. Langmuir 125:1881–1884

    Article  Google Scholar 

  • Kim HJ, Kihm KD, Allen JS (2003) Examination of ratiometric laser induced fluorescence thermometry for microscale spatial measurement resolution. Int J Heat Mass Transf 46:3967–3974

    Article  Google Scholar 

  • Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8

    Google Scholar 

  • Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638

    Article  Google Scholar 

  • Kolomenskii AA, Gershon PD, Schuessler HA (1997) Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance. Appl Opt 36:6539–6547

    Article  Google Scholar 

  • Kotsev SN, Dushkin CD, Ilev IK, Nagayama K (2003) Refractive index of transparent nanoparticle films measured by surface plasmon microscopy. Colloid Polym Sci 281:343–352

    Article  Google Scholar 

  • Kretschmann EZ (1971) Die Bestimmung optisher Konstanten von Metallen durch Anregung von Oberfachenplasmaschwingungen. Physik 241:313–324

    Article  Google Scholar 

  • Kryukov AE, Kim Y-K, Kettersonb JB (1997) Surface plasmon scanning near-field optical microscopy. J Appl Phys 82:5411–5415

    Article  Google Scholar 

  • Kurihara K, Suzuki K (2002) Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory. Anal Chem 74:696–701

    Article  Google Scholar 

  • Lakowicz JR (2004) Radiative decay engineering 3: surface plasmon-coupled directional emission. Anal Biochem 324:153–169

    Article  Google Scholar 

  • Lam WW, Chu LH, Wong CL, Zhang YT (2005) A surface plasmon resonance system for the measurement of glucose in aqueous solution. Sensors Actuators B 105:138–143

    Article  Google Scholar 

  • Lee HJ, Li Y, Wark AW, Corn RM (2005a) Enzymatically amplified surface plasmon resonance imaging detection of DNA by Exonuclease III digestion of DNA microarrays. Anal Chem 77:5096–5100

    Article  Google Scholar 

  • Lee HJ, Yan Y, Marriot G, Corn RM (2005b) Quantitative functional analysis of protein complexes on surfaces. J Physiol 563(1):61–71

    Article  Google Scholar 

  • Libermann T, Knoll W (2000) Surface-plasmon field enhanced fluorescence spectroscopy. Colloids Surf 171:115–130

    Article  Google Scholar 

  • Lide DR (2005) CRC handbook of chemistry and physics, 85th edn. CRC Press (Electronic Edition), Boca Raton

    Google Scholar 

  • Liu JY, Tiefenauer L, Tian SJ, Nielsen PE, Knoll W (2006) PNA-DNA hybridization study using labeled streptavidin by voltammetry and surface plasmon fluorescence spectroscopy. Anal Chem 78:470–476

    Article  Google Scholar 

  • Maillard M, Motte L, Ngo AT, Pileni MP (2000) Ring and hexagons made of nanocrystals: a Marangoni effect. J Phys Chem B 104:11871–11877

    Article  Google Scholar 

  • Merzkirch W (1987) Flow visualization, 2nd edn. Academic Press, Orlando, pp 115–231

    MATH  Google Scholar 

  • Moreels E, de Greef C, Finsy R (1984) Laser light refractometer. Appl Opt 23:3010–3013

    Article  Google Scholar 

  • Morgan H, Taylor DM (1994) Surface plasmon resonance microscopy: reconstructing a three-dimensional image. Appl Phys Lett 64:1330–1331

    Article  Google Scholar 

  • Motte L, Lacaze E, Maillard M, Pileni MP (2000) Self-assemblies of silver sulfide nanocrystals on various substrates. Langmuir 16:3803–3812

    Article  Google Scholar 

  • Natan MJ, Lyon LA (2002) Surface plasmon resonance biosensing with colloidal Au amplification. In: Feldheim DL, Foss CA (eds) Metal nanoparticles. Marcel Dekker, New York, pp 183–205

    Google Scholar 

  • Neff H, Zong W, Lima AMN, Borre M, Holzhuter G (2006) Optical properties and instrumental performance of thin gold films near the surface plasmon resonance. Thin Solid Films 496:688–697

    Article  Google Scholar 

  • Nelson P, Frutos AG, Brockman JM, Corn RM (1999) Near-infrared surface plasmon resonance measurements of ultrathin films 1. Angle shift and SPR imaging experiments. Anal Chem 71:3928–3934

    Article  Google Scholar 

  • Neumann T, Johansson M-L, Kambhampati D, Knoll W (2002) Surface-plasmon fluorescence spectroscopy. Adv Funct Mater 12:575–586

    Article  Google Scholar 

  • Nikitin PI, Beloglazov AA, Kochergin VE, Valeiko MV, Ksenevich TI (1999) Surface plasmon resonance interferometry for biological and chemical sensing. Sensors Actuators B 54:43–50

    Article  Google Scholar 

  • Otto A (1968) Excitation of surface plasma waves in silver by the method of frustrated total reflection. Z Physik 216:2135–2136

    Article  Google Scholar 

  • Ozdemir SK, Turhan-Sayan G (2003) Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor. J Lightwave Technol 21:805–814

    Article  Google Scholar 

  • Pathak SS, Savelkoul HFJ (1997) Biosensors in immunology: the story so far. Immunol Today 18:464–467

    Article  Google Scholar 

  • Pauchard L, Allain CCR (2003) Mechanical instability induced by complex liquid desiccation. Physique 4:231–239

    Article  Google Scholar 

  • Peterlinz KA, Georgiandis R (1996) In situ kinetics of self-assembly by surface plasmon resonance spectroscopy. Langmuir 12:4731–4740

    Article  Google Scholar 

  • Podgorsek RP, Franke H (1998) Optical determinations of molecule diffusion coefficients in polymer films. Appl Phys Lett 73:2887–2889

    Article  Google Scholar 

  • Podgorsek RP, Franke H (2002) Selective optical detection of aromatic vapors. Appl Opt 41:601–608

    Article  Google Scholar 

  • Rabani E, Reichman DR, Geissler PL, Brus LE (2003) Drying-mediated self-assembly of nanoparticles. Nature 426:271–274

    Article  Google Scholar 

  • Raether H (1977) Surface plasma oscillations and their application. In: Hass G, Francombe MH, Hoffmann RW (eds) Physics of thin films, vol 9. Academic, New York, pp 145–261

    Google Scholar 

  • Raether H (1988) Surface plasmons. Springer-Verlag, Berlin

    Google Scholar 

  • Ramanavieius A, Herberg FW, Hutschenreiter S, Zimmermann B, Lapenaite I, Kausaite A, Finkelsteinas A, Ramanavieiene A (2005) Biomedical application of surface plasmon resonance biosensors (review). Acta Medica Lituanica 12(3):1–9

    Google Scholar 

  • Richie RH (1957) Plasma losses by east electrons in thin films. Phys Rev 106:874–881

    Article  MathSciNet  Google Scholar 

  • Rothenhausler B, Knoll W (1988) Surface plasmon microscopy. Nature 332:615–617

    Article  Google Scholar 

  • Rothenhausler B, Rabe J, Korpiun P, Knoll W (1984) On the decay of plasmon surface polaritons at smooth and rough Ag-air interfaces: a reflectance and photo-acoustic study. Surf Sci 137:373–383

    Article  Google Scholar 

  • Salamon Z, Macleod HA, Tollin G (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. Biochim Biophys Acta 1331:117–129

    Google Scholar 

  • Sharma AK, Gupta BD (2006) Theoretical model of fiber optic remote sensor based on surface plasmon resonance for temperature detection. Opt Fiber Technol 12:87–100

    Article  Google Scholar 

  • Shmuylovich L, Shen AQ, Stone HA (2002) Surface morphology of drying latex films: multiple ring formation. Langmuir 18:3441–3445

    Google Scholar 

  • Shumaker-Parry JS, Aebersold R, Campbell CT (2004) Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. Anal Chem 76:2071–2082

    Article  Google Scholar 

  • Slavik R, Homola J (2007) Ultrahigh resolution long range surface plasmon-based sensor. Sensors Actuators B 123:10–12

    Article  Google Scholar 

  • Smolyyaninov II (2005) A far field optical microscope with nanometer-scale resolution based on in-plane surface plasmon imaging. J Opt A 7:S165–S175

    Google Scholar 

  • Smolyyaninov II, Davis CC, Elliot J, Zayats AV (2005a) Resolution enhancement of a surface immersion microscopy near the plasmon resonance. Opt Lett 30:382–384

    Article  Google Scholar 

  • Smolyyaninov II, Elliot J, Zayats AV, Davis CC (2005b) Far field optical microscope with a nanometer-scale resolution based on the in-plane imaging magnification by surface plasmon polarizations. PRL 94: 057401-1-4

    Google Scholar 

  • Snopok BA, Kostyukevich KV, Lysenko SI, Lytvyn PM, Lytvyn OS, Mamykin SV, Zynyo SA, Shepeliavyi PE, Kostyukevich SA, Shirshov YM, Venger EF (2001) Semiconductor physics. Quantum Electron Optoelectron 4:56

    Google Scholar 

  • Sommer AP (2007) Microtornadoes under a nanocrystalline igloo: results predicting a worldwide intensification of tornadoes. Cryst Growth Des 7:1031–1034

    Article  Google Scholar 

  • Sommer AP, Pavlath AE (2007) The subaquatic layer. Cryst Growth Des 7:18–24

    Article  Google Scholar 

  • Sommer AP, Rozzlosnik N (2005) Formation of crystalline ring patterns on extremely hydrophobic supersmooth substrates: extension of ring formation paradigms. Cryst Growth Des 5:551–557

    Article  Google Scholar 

  • Sommer AP, Zhu D (2007) Microtornadoes under a nanocrystalline igloo. 2. Results predicting a worldwide intensification of tornadoes. Cryst Growth Des 7:2373–2375

    Article  Google Scholar 

  • Sommer AP, Ben-Moshe M, Magdassi S (2004) Size discriminative self-assembly of nanospheres in evaporating drops. J Phys Chem B 108:8–10

    Article  Google Scholar 

  • Strook AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651

    Article  Google Scholar 

  • Thomson JJ, Newall HF (1885) On the formation of vortex rings by drops falling into liquids, and some allied phenomena. Proc R Soc 39:417–436

    Article  Google Scholar 

  • Venkata PG, Aslan MM, Menguc MP, Videen G (2007) J. Heat Transf 129:60–70

    Article  Google Scholar 

  • Wang J, Evans RG (2006) Drying behaviour of droplets of mixed powder suspensions. J Eur Ceram Soc 26:3123–3131

    Article  Google Scholar 

  • White FM (2008) Fluid mechanics, 6th edn. McGraw Hill, New York

    Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  Google Scholar 

  • Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil Magm 4:396–402

    Google Scholar 

  • Xinglong Y, Dingxin W, Xing W, Xiang D, Wei L, Xinsheng Z (2005) A surface plasmon resonance imaging interferometry for protein micro-array detection. Sensors Actuators B 108:765–771

    Article  Google Scholar 

  • Xu X, Luo J (2007) Marangoni flow in an evaporating water droplet. Appl Phys Lett 91:124102

    Article  Google Scholar 

  • Xu J, Xia J, Lin Z (2007) Evaporation-induced self-assembly of nanoparticles from a sphere-on-flat geometry. Angew Chem 46:1860–1863

    Article  Google Scholar 

  • Yuk JS, Ha K (2005) Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays. Exp Mol Med 37:1–10

    Google Scholar 

  • Zeng J, Liang D, Cao Z (2005) Applications of optical fiber SPR sensor for measuring of temperature and concentration of liquids. Proc SPIE 5855:667–669

    Article  Google Scholar 

  • Zhang T, Morgan H, Curtis ASG, Riehle M (2001) Measuring particle-substrate distance with surface plasmon resonance microscopy. J Opt A 3:333–337

    Google Scholar 

Download references

Acknowledgments

Preparation of the manuscript was partially supported by the WCU (World Class University) Program through the Korea Science and Engineering Foundation (KOSEF) funded by the Ministry of Education, Science and Technology (R31-2008-000-10083-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Kihm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kihm, K.D. Surface plasmon resonance reflectance imaging technique for near-field (~100 nm) fluidic characterization. Exp Fluids 48, 547–564 (2010). https://doi.org/10.1007/s00348-009-0701-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-009-0701-y

Keywords

Navigation