Skip to main content
Log in

Dynamic vortex structures for flow-control applications

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

It is well known that the application of active flow-control strategies has the potential to increase the efficiency of many devices when compared to static actuator concepts. However, many aspects of the flow-control process are not well understood. In the case of pneumatic vortex generators the importance of coherent structures and their interaction with turbulent boundary layers remains an open question. A flat plate experiment was performed to determine the dynamic evolution of the induced vortex structures using phase-locked stereoscopic Particle Image Velocimetry. The qualification of the actuator system was performed by means of the time-resolved Particle Image Velocimetry measurements of the jet flow. The results show that an initial overshooting of the jet velocity dominates the unsteady start-up process, which results in a vortex structure of larger size and impact. This effect differs essentially from the case of steady blowing. In addition, the ability to shift high-momentum fluid into the near-wall region is a result of strong mixing combined with a minimum distance between the vortex core and the model surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bitter M, Ortmanns J, Kähler CJ (2006) Untersuchungen zur Dynamik künstlich angeregter Längswirbel in einer turbulenten Plattengrenzschicht mit Stereo-PIV. Fachtagung Lasermethoden in der Strömungsmesstechnik, 5–7 September

  • Compton DA, Johnston JP (1992) Streamwise vortex production by pitched and skewed jets in a turbulent boundary layer. AIAA J 30(3):640–647

    Google Scholar 

  • Gad-el-Hak M (2000) Flow-control: passive, active, and reactive flow management. Cambridge University Press, London, p 448

  • Godard G, Stanislas M (2006) Control of a decelerating boundary layer. Part3: Optimization of round jets vortex generators. Aerosp Sci Technol 10:455–464

    Article  Google Scholar 

  • Godard G, Foucaut JM, Stanislas M (2006) Control of a decelerating boundary layer. Part2: Optimization of slotted jets vortex generators. Aerosp Sci Technol 10:394–400

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MATH  MathSciNet  Google Scholar 

  • Johari H, Rixon GS (2003) Effects of pulsing on a vortex generator jet. AIAA J 41(2):2309–2315

    Google Scholar 

  • Johnston JP, Nishi M (1990) Vortex generator jets—means for flow separation control. AIAA J 28(6):989–994

    Google Scholar 

  • Kostas J, Foucaut JM, Stanislas M (2007) The flow structure produced by pulsed-jet vortex generators in a turbulent boundary layer in an adverse pressure gradient. Flow Turbul Combust. doi:10.1007/s10494-007-9069-3

  • Lachmann GV (ed) (1961) Boundary layer and flow-control, vols 1 & 2. Pergamon Press, Oxford

  • Magill JC, McManus KR (2001) Exploring the feasibility of pulsed jet separation control for aircraft configurations. J Aircr 38(1), January, February

  • Margalit S, Greenblatt D, Seifert A, Wygnanski I (2005) Delta wing stall and roll control using segmented piezoelectric fluidic actuators. J Aircr 42(3):698–709

    Google Scholar 

  • Melton LP, Yao C-S (2006) Active control of separation form flap of a supercritical airfoil. AIAA J 44(1)

  • Okamoto S, Honma N, Adachi A, Honami S (2006) Dynamic interaction of the longitudinal vortices by active vortex generators. AIAA 2006–3181, 3rd AIAA flow-control conference, 5–8 June, San Francisco

  • Ortmanns J, Kähler CJ (2004) Investigation of pulsed actuators for active flow-control using phase locked stereoscopic particle image velocimetry. 12th int symposium on application of laser techniques to fluid mechanics, Lisbon

  • Ortmanns J, Kähler CJ (2007) The effect of a single vortex generator jet on the characteristics of a turbulent boundary layer. Int J Heat Fluid Flow. doi:10.1016/j.ijheatfluidflow.2007.06.006

  • Scholz P, Ortmanns J, Kähler CJ, Radespiel R (2006) Influencing the mixing process in a turbulent boundary layer by pulsed jet actuators. Notes on numerical fluid mechanics and multidisciplinary design (NNFM). Springer, Heidelberg, pp 265–272

  • Seifert A, Bachar T, Koss D, Shepshelovich M, Wygnanski I (1993) Oscillatory blowing: a tool to delay boundary-layer separation. AIAA J 11:2052–2060

    Google Scholar 

  • Seifert A, Darabi A, Wygnanski I (1996) Delay of airfoil stall by periodic excitation. J Aircr 33(4):691–698

    Article  Google Scholar 

  • Seifert A, Eliahu S, Greenblatt D (1998) Use of piezoelectric actuators for airfoil separation control. AIAA J Tech Notes 36(8):1535–1537

    Google Scholar 

  • Suzuki T, Nagata M, Shizawa T, Honami S (1998) Optimal injection condition of a single pulsed vortex generator jet to promote the cross-stream mixing. Exp Therm Fluid Sci 17:139–146

    Article  Google Scholar 

  • Tilmann C, Langan KL, Betterton JG, Wilson MJ (2003) Characterization of pulsed vortex generator jets for active flow-control. AFRL-VA-WP-TP-2003-336, Wright-Patterson Air Force Base

  • Tinapp F, Nitsche W (1998) LDV-measurements on a high-lift configuration with separation control. Laser techniques applied to fluid mechanics, 9th international symposium, Lisbon

  • Truckenbrodt E (1968) Strömungsmechanik. Springer, Berlin

    MATH  Google Scholar 

  • Vollmers H (2001) Detection of vortices and quantitative evaluation of their main parameters form experimental velocity data. Meas Sci Technol 12:1199–1207

    Article  Google Scholar 

  • Wendt BJ (2001) Initial circulation and peak vorticity behavior of vortices shed from airfoil vortex generators. NASA/CR-2001-211144

  • Zhang X (2000) An inclined rectangular jet in a turbulent boundary layer-vortex flow. Exp Fluids 28:344–354

    Article  Google Scholar 

  • http://www.tu-bs.de/ism/institut/wkanlagen/wub

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Ortmanns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortmanns, J., Bitter, M. & Kähler, C.J. Dynamic vortex structures for flow-control applications. Exp Fluids 44, 397–408 (2008). https://doi.org/10.1007/s00348-007-0442-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0442-8

Keywords

Navigation