Skip to main content

Advertisement

Log in

Control of the near-wake flow around a circular cylinder with electrohydrodynamic actuators

  • Original
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We analysed the modifications of the near wake of a circular cylinder (2,300< Re <58,000) when the flow was perturbed steadily using an electrohydrodynamic actuator. Two electrodes flush-mounted on the surface of the cylinder were excited with DC power supplies to create a plasma sheet contouring the body. The discharge produced an electric force and changed the physical properties in the fluid layers at close vicinity to the surface. This plasma sheet diminished the base pressure, modified the size of the mean recirculation region and produced an increase in the shear stresses of the layers bounding the contour of this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 a
Fig. 2
Fig. 3
Fig. 4
Fig. 5a, b
Fig. 6a, b
Fig. 7
Fig. 8a, b
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Artana G, Desimone G, Touchard G (1999) Study of the changes in the flow around a cylinder caused by electroconvection. In: Electrostatics’99, Philadelphia, pp 147–152

  • Artana G, D’Adamo J, Desimone G, DiPrimio G (2000) Air flow control with electrohydrodynamic actuators. In: Proc 2nd int workshop on conduction convection and brakdown in fluids, Grenoble, pp 190–194

  • Artana G, Diprimio G, Moreau E, Touchard G (2001) Electrohydrodynamic actuators on a subsonic air flow around a circular cylinder. AIAA paper 2001-3056

  • Artana G, D’Adamo J, Leger L, Moreau E, Touchard G (2002) Flow control with electrohydrodynamic actuators. AIAA J 9:1773–1779

    Google Scholar 

  • Bloor MS (1963) The transition to turbulence in the wake of a circular cylinder. J Fluid Mech 19:290–304

    Google Scholar 

  • Bushnell D (1983) Turbulent drag reduction for external flows. AIAA paper 83-0227

  • Chyu C, Lin C, Sheridan J, Rockwell D (1995) Karman vortex formation from a cylinder: role of phase-locked Kelvin–Helmholtz vortices. Phys Fluids 7:2288–2290

    Article  Google Scholar 

  • Colver G, El-Khabiry S (1999) Modeling of DC corona discharge along an electrically conductive flat plate with gas flow. IEEE Trans Ind Appl 35:387–394

    Article  Google Scholar 

  • Corke T, Mattalis E (2000) Phased plasma arrays for unsteady flow control. AIAA paper 2000-2323

  • Corke T, Jumper E, Post M, Orlov D, McLaughlin T (2002) Applications weakly ionized plasmas as wing flow control devices. AIAA paper 2002-0350

  • Desimone G (2000) Estudio experimental de la modificación del escurrimiento alrededor de un cilindro circular a través de la electroconvección. Dissertation, Facultad de Ingeniería, Universidad de Buenos Aires, Argentina

  • Desimone G, DiPrimio G, Artana G (1999) Modification of the flow around a cylinder by means of electrodes placed on its surface. In: Proc colloque de la societé Francaise d’electrostatique, Poitiers, pp 80–84

  • El-Khabiry S, Colver G (1997) Drag reduction by D.C. corona discharge along an electrically conductive flat plate for small Reynolds number flows. Phys Fluids 9:587–599

    Article  CAS  Google Scholar 

  • Huerre P, Monkewitz P (1990) Local and global instabilities in spatially developing flows. Annu Rev Fluid Mech 22:473–537

    Article  Google Scholar 

  • Hultgren LS, Ashpis DE (2003) Demonstration of separation delay with glow-discharge plasma actuators. AIAA paper 2003-1025

  • Johnson J, Scott S (2001) Plasma–aerodynamic boundary layer interaction studies. AIAA paper 2001-30523

  • Keane R, Adrian R (1992) Theory of cross correlation analysis of PIV images. Appl Sci Res 49:191–215

    Google Scholar 

  • Léger L, Moreau E, Touchard G (2002a) Effect of a DC corona electrical discharge on the airflow along a flat plate. IEEE Trans Ind Appl 38:1478–1485

    Article  Google Scholar 

  • Léger L, Moreau E, Touchard G (2002b) Electrohydrodynamic airflow control along a flat plate by a DC surface corona discharge—velocity profile and wall pressure measurements. AIAA paper 2002-2833

  • Léger L, Moreau E, Artana G, Touchard G (2000) Modification de l’ecoulement d’air autour d’une plaque plane par une decharge couronne. Colloque de la Societe Francaise d’Eectrostatique, Montpellier, pp 97–101

  • Léger L, Moreau E, Artana G, Touchard G (2001) Influence of a DC corona discharge on the airflow along an inclined flat plate. J Electrostat 50/51:300–306

    Google Scholar 

  • Lorber P, McCormick D, Pollack M, Breuer K, Corke T, Anderson I (2000) Rotorcraft retreating blade stall control. AIAA paper 2000-2475

  • Malik M, Weinstein L, Hussaini M (1983) Ion wind drag reduction. AIAA paper 83-0231

  • Meier GEA (1996) Active control of boundary layer and separation. In: Meier GEA, Schnerr GH (eds) Control of flow instabilities and unsteady flows. Springer-Wien, New York, pp 203–233

  • Norberg C (1994) An experimental investigation of the flow around a circular cylinder: influence of aspect radio. J Fluid Mech 258:287–316

    CAS  Google Scholar 

  • Roshko A (1993) Perspectives on bluff body aerodynamics. J Wind Ind Aerodyn 49:78–79

    Google Scholar 

  • Roth JR, Sherman D (1998) Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. AIAA paper 98-0328

  • Roth JR, Sherman D (2000) Electrohydrodynamic flow control with a glow discharge surface plasma. AIAA J 38:1166–1178

    CAS  Google Scholar 

  • Scherbakov Y, et al (2000) Drag reduction by AC streamer corona discharges along a wing-like profile plate. AIAA paper 2000-2670

  • Soetomo F (1992) The influence of high voltage discharge on flat plate drag at low Reynolds number air flow. Dissertation, Iowa State University, Ames, IA, USA

  • Sychev V (1982) Asymptotic theory of separated flows. Mekh Zhidkosti i Gaza 2:20–30

    Google Scholar 

  • Tensi J, Boué I, Paillé F, Dury G (2002) Modification of the wake behind a circular cylinder by using synthetic jets. J Visualiz 5:37–44

    CAS  Google Scholar 

  • Unal MF, Rockwell D (1988) On vortex formation from a cylinder. 1. The initial instability. J Fluid Mech 190:491–512

    Google Scholar 

  • Wilkinson SP (2003) Investigation of an oscillating surface plasma for turbulent drag reduction. AIAA paper 2003-1023

  • Williamson CHK (1996) Vortex dynamics in the cylinder wake. Annu Rev Fluid Mech 28:477–539

    Google Scholar 

  • Zdravkovich M (1997) In: Flow around circular cylinders, vol 1. Oxford Science, Oxford, pp 1–18

Download references

Acknowledgements

This research was supported by the UBACYT AI-03 and PICT 2000–2001 12-482 grants from the Argentine government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Artana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artana, G., Sosa, R., Moreau, E. et al. Control of the near-wake flow around a circular cylinder with electrohydrodynamic actuators. Exp Fluids 35, 580–588 (2003). https://doi.org/10.1007/s00348-003-0704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-003-0704-z

Keywords

Navigation