Skip to main content
Log in

Künstlicher Glaskörper

Strategien zum Glaskörperersatz

Artificial vitreous body

Strategies for vitreous body substitutes

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Trotz wesentlicher technologischer Innovationen löst die Pars-plana-Vitrektomie (ppV) in Kombination mit Endotamponaden nicht alle Probleme der Ablatiochirurgie. Auch modernste Tamponadematerialien bieten keine zufriedenstellende Antwort auf Mehrlochsituationen an unterschiedlichen Stellen, die Problematik der proliferativen Vitreoretinopathie (PVR) oder die persistierende Hypotonie. Dabei fällt auf, dass alle verfügbaren Materialien (Gase, Öle, Fluorkarbone) hydrophob sind und damit ihre tamponierenden Eigenschaften über Auftriebsvektor und Oberflächenspannung ausüben. Obwohl dies in der klinischen Anwendung durchaus erfolgreich ist, birgt der hydrophobe Charakter auch deutliche Nachteile, die beispielsweise die PVR-Entwicklung eher fördern als hemmen.

Zielsetzung

Wünschenswert im Sinne einer idealen Tamponade wäre hingegen ein Glaskörperersatz, der dem natürlichen Glaskörper nachempfunden ist, also seine tamponierende Wirkung eher durch Quelldruck und Viskosität ausübt. Moderne Hydrogele zeigen eine gute, Quelldruck-vermittelte Tamponadewirkung bei gleichzeitig sehr guten optischen Eigenschaften. Verschiedene Ansätze erstrecken sich vorwiegend auf den Einsatz quervernetzter semisynthetischer oder vollsynthetischer Polymere. Diese Hydrogele besitzen nicht nur ausgezeichnete refraktive und rheologische Eigenschaften sowie eine hervorragende Biokompatibilität, sondern wirken zusätzlich antiadhäsiv und antimigrativ. Dadurch könnten PVR-Reaktionen alleine durch die Hydrogeltamponade reduziert werden. Die zusätzliche Möglichkeit einer kontrollierten Medikamentenfreisetzung durch entsprechend beladene Hydrogele kann weitere antiproliferative, neuroprotektive oder nutritive Funktionen erfüllen.

Abstract

Background

Although numerous advances have been made in technology and techniques of pars plana vitrectomy and tamponades, there are still unsolved issues, such as proliferative vitreoretinopathy (PVR), multiple retinal breaks and persistent hypotonia. All available internal tamponades (e.g, gases, oils and fluorocarbons) are hydrophobic, so they approximate the neurosensory retina to the retinal pigment epithelium due to buoyant force and surface tension. Even though these tamponade materials exhibit various beneficial attributes in the clinical application, the hydrophobic nature has clear disadvantages and compartmentalization and significant incidence of PVR development still occur.

Results and conclusion

An ideal vitreous body substitute should mimic the native human vitreous body, in both form and function. Vitreous body substitutes, such as hydrogels fulfill the biophysical needs in a similar manner to the natural vitreous body by providing an internal tamponade effect through swelling pressure and viscosity. New approaches range from cross-linked semisynthetic to synthetic polymers. These hydrogels have a good biocompatibility, optical clarity, a refractive index and rheological properties that are similar to the natural human vitreous body and are able to act as anti-adhesive and anti-migrative agents and can therefore reduce PVR. Furthermore, hydrogels could also serve as controlled-release drug-delivery systems for anti-proliferative, neuroprotective or nutritive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Chang S (1987) Low viscosity liquid fluorochemicals in vitreous surgery. Am J Ophthalmol 103:38–43

    Article  CAS  PubMed  Google Scholar 

  2. Chang S, Lincoff H, Zimmerman NJ, Fuchs W (1989) Giant retinal tears. Surgical techniques and results using perfluorocarbon liquids. Arch Ophthalmol 107:761–766

    Article  CAS  PubMed  Google Scholar 

  3. Chirila TV, Hong Y, Dalton PD, Constable IJ, Refojo MF (1998) The use of hydrophilic polymers as artificial vitreous. Progress Polymer Sci 23:475–508

    Article  CAS  Google Scholar 

  4. Cibis PA, Becker B, Okun E, Canaan S (1962) The use of liquid silicone in retinal detachment surgery. Arch Ophthalmol 68:590–599

    Article  CAS  PubMed  Google Scholar 

  5. Custodis E (1956) [Treatment of retinal detachment by circumscribed diathermal coagulation and by scleral depression in the area of tear caused by imbedding of a plastic implant]. Klin Monbl Augenheilkd 129(4):476–495

    CAS  Google Scholar 

  6. Daniele S, Refojo MF, Schepens CL, Freeman H (1968) Glyceryl methacrylate hydrogel as a vitreous implant: an experimental study. Arch Ophthalmol 80:120–127

    Article  CAS  PubMed  Google Scholar 

  7. Deutschmann R (1906) Zur operativen Behandlung der Netzhautablösung. Klin Monbl Augenheilkd 1:364–370

    Google Scholar 

  8. Fernandez-Vigo J, Refojo MF, Verstraeten T (1990) Evaluation of a viscoelastic solution of hydroxypropyl methylcellulose as a potential vitreous substitute. Retina 10:148–152

    Article  CAS  PubMed  Google Scholar 

  9. Gonin J (1933) The evolution of ideas concerning retinal detachment within the last five years. Br J Ophthalmol 17:726–740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hong Y, Chirila TV, Vijayasekaran S, Dalton PD, Tahija SG, Cuypers MJ et al (1996) Crosslinked poly(1-vinyl-2-pyrrolidinone) as a vitreous substitute. J Biomed Mater Res 30:441–448

    Article  CAS  PubMed  Google Scholar 

  11. Hong Y, Chirila TV, Vijayasekaran S, Shen W, Lou X, Dalton PD (1998) Biodegradation in vitro and retention in the rabbit eye of crosslinked poly(1-vinyl-2-pyrrolidinone) hydrogel as a vitreous substitute. J Biomed Mater Res 39:650–659

    Article  CAS  PubMed  Google Scholar 

  12. Krzystolik MG, D’Amico DJ (2000) Complications of intraocular tamponade: silicone oil versus intraocular gas. Int Ophthalmol Clin 40:187–200

    Article  CAS  PubMed  Google Scholar 

  13. Leone G, Consumi M, Aggravi M, Donati A, Lamponi S, Magnani A (2010) PVA/STMP based hydrogels as potential substitutes of human vitreous. J Mater Sci Mater Med 21:2491–2500

    Article  CAS  PubMed  Google Scholar 

  14. Lewis H, Burke JM, Abrams GW, Aaberg TM (1988) Perisilicone proliferation after vitrectomy for proliferative vitreoretinopathy. Ophthalmology 95:583–591

    Article  CAS  PubMed  Google Scholar 

  15. Liang C, Peyman GA, Serracarbassa P, Calixto N, Chow AA, Rao P (1998) An evaluation of methylated collagen as a substitute for vitreous and aqueous humor. Int Ophthalmol 22:13–18

    Article  CAS  PubMed  Google Scholar 

  16. Lou X, Garrett KL, Rakoczy PE, Chirila TV (2001) Synthetic hydrogels as carriers in antisense therapy: preliminary evaluation of an oligodeoxynucleotide covalent conjugate with a copolymer of 1-vinyl-2-pyrrolidinone and 2-hydroxyethyl methacrylate. J Biomedical Mater Res 15:307–320

    CAS  Google Scholar 

  17. Machemer R (1995) The development of pars plana vitrectomy: a personal account. Graefes Arch Clin Exp Ophthalmol 233:453–468

    Article  CAS  PubMed  Google Scholar 

  18. Martínez-Castillo V, Zapata MA, Boixadera A, Fonollosa A, García-Arumí J (2007) Pars plana vitrectomy, laser retinopexy, and aqueous tamponade for pseudophakic rhegmatogenous retinal detachment. Ophthalmology 114:297–302

    Article  PubMed  Google Scholar 

  19. Maruoka S, Matsuura T, Kawasaki K, Okamoto M, Yoshiaki H, Kodama M et al (2006) Biocompatibility of polyvinylalcohol gel as a vitreous substitute. Current Eye Res 31:599–606

    Article  CAS  Google Scholar 

  20. Pruett RC, Calabria GA, Schepens CL (1972) Collagen vitreous substitute. I. Experimental study. Arch Ophthalmology 88:540–543

    Article  CAS  Google Scholar 

  21. Pruett RC, Schepens CL, Swann DA (1979) Hyaluronic acid vitreous substitute. A six-year clinical evaluation. Arch Ophthalmol 97:2325–2330

    Article  CAS  PubMed  Google Scholar 

  22. Rauck BM, Friberg TR, Medina Mendez CA, Park D, Shah V, Bilonick RA et al (2014) Biocompatible reverse thermal gel sustains the release of intravitreal bevacizumab in vivo. Invest Ophthalmol Vis Sci 55:469–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Robert Y, Gloor B, Wachsmuth ED, Herbst M (1988) Evaluation of the tolerance of the intra-ocular injection of hydroxypropyl methylcellulose in animal experiments. Klin Monbl Augenheilkd 192:337–339

    Article  CAS  PubMed  Google Scholar 

  24. Rosengren B (1938) Results of treatment of detachment of the retina with diathermy and injection of air into the vitreous. Acta Ophthalmol 16:573–579

    Article  Google Scholar 

  25. Schramm C, Spitzer MS, Henke-Fahle S, Steinmetz G, Januschowski K, Heiduschka P et al (2012) The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute. Invest Ophthalmol Vis Sci 53(2):613–621

    Article  CAS  PubMed  Google Scholar 

  26. Shi W, Ji Y, Zhang X, Shu S, Wu Z (2011) Characterization of ph- and thermosensitive hydrogel as a vehicle for controlled protein delivery. J Pharm Sci 100(3):886–895

    Article  CAS  PubMed  Google Scholar 

  27. Spitzer MS, Yoeruek E, Kaczmarek RT, Sierra A, Aisenbrey S, Grisanti S et al (2008) Sodium hyaluronate gels as a drug-release system for corticosteroids: release kinetics and antiproliferative potential for glaucoma surgery. Acta Ophthalmol 86:842–848

    Article  CAS  PubMed  Google Scholar 

  28. Suri S, Banerjee R (2006) In vitro evaluation of in situ gels as short term vitreous substitutes. J Biomed Mater Res A 79:650–664

    Article  CAS  PubMed  Google Scholar 

  29. Swindle KE, Hamilton PD, Ravi N (2006) Advancements in the development of artificial vitreous humor utilizing polyacrylamide copolymers with disulfide crosslinkers. Am Chem Soc Polymer Preprint 47:59–60

    CAS  Google Scholar 

  30. Swindle KE, Hamilton PD, Ravi N (2008) In situ formation of hydrogels as vitreous substitutes: viscoelastic comparison to porcine vitreous. J Biomed Mater Res 87:656–665

    Article  Google Scholar 

  31. Tao Y, Tong X, Zhang Y, Lai J, Huang Y, Jiang Y-R et al (2013) Evaluation of an in situ chemically crosslinked hydrogel as a long-term vitreous substitute material. Acta Biomater 9(2):5022–5030

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mariacher.

Ethics declarations

Interessenkonflikt

S. Mariacher und P. Szurman geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariacher, S., Szurman, P. Künstlicher Glaskörper. Ophthalmologe 112, 572–579 (2015). https://doi.org/10.1007/s00347-015-0057-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-015-0057-z

Schlüsselwörter

Keywords

Navigation