Skip to main content
Log in

Humanes Leukozytenantigensystem in der Augenheilkunde

Human leukocyte antigen (HLA) system in ophthalmology

  • Übersichten
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Moleküle des Haupthistokompatibilitätskomplexes („major histocompatibility complex“, MHC) präsentieren Peptidfragmente auf der Oberfläche verschiedenster Zellen, wie z. B. spezialisierter antigenpräsentierender Zellen (APZ) an Effektorzellen des Immunsystems. Dieser Mechanismus ist an verschiedenen Prozessen beteiligt, so am Töten infizierter Zellen, an der Stimulation von Makrophagen zur Destruktion phagozytierter intrazellulärer Vesikel und an der Transformation von B-Zellen in antikörperproduzierende Plasmazellen. Entdeckt wurde die Bedeutung des MHC-Systems zuerst aufgrund von Unterschieden zwischen Leukozyten verschiedener Individuen; in diesem Zusammenhang wird daher oft auch vom humanen Leukozytenantigensystem („human leukocyte antigen“, HLA) gesprochen. Neben ihrer Funktion bei der Aktivierung des Immunsystems sind MHC-Moleküle auch mit verschiedenen Erkrankungen assoziiert; d. h., bestimmte HLA-Phänotypen erhöhen das relative Risiko für verschiedene Krankheiten. Und auch an Transplantatabstoßungsreaktionen sind HLA-Moleküle beteiligt: Wichtigste Grundvoraussetzung für den Erfolg einer Transplantation ist eine möglichst hohe HLA-Übereinstimmung zwischen Spender und Empfänger. Bei der Transplantation von soliden Organen erfolgt daher zuvor jeweils eine HLA-Typisierung. Auch bei der Hornhauttransplantation werden derzeit multizentrische Studien durchgeführt, um die Zusammenhänge von HLA-Klasse-I- und -Klasse-II-Molekülen sowie Major- und Minor-HLA-Molekülen und Transplantationserfolg zu klären. Die HLA-Typisierung ist in verschiedensten medizinischen Bereichen fester Bestandteil der Diagnostik. Mit einem vertretbaren Kosten-Nutzen-Verhältnis bietet sie eine sinnvolle bzw. teilweise notwendige Ergänzung zur Diagnosestellung verschiedenster Erkrankungen; in manchen Fällen besitzt sie zudem eine prognostische Signifikanz. Die vorliegende Übersichtsarbeit gibt einen Überblick über genetische und molekulare Grundlagen, pathophysiologische Zusammenhänge sowie mögliche bzw. sinnvolle diagnostische Anwendungen der HLA-Typisierung im Bereich der Augenheilkunde.

Abstract

Various inflammatory and non-inflammatory eye diseases are associated with specific HLA isotypes. Therefore, HLA isotyping can be a useful diagnostic tool for these diseases and has already been shown to reduce the rejection rate of corneal allografts. Unfortunately, the volume of published data and the varying quality of these publications complicate obtaining good overview in this field. This review briefly summarizes the genetic structure of the HLA system and elucidates differences between HLA classes I and II in the context of antigen presentation. Possible mechanisms of HLA associations in the field of ophthalmology are discussed, and finally different tools (e.g. genome wide association studies) for assessing associations of HLA isotypes with different ocular diseases are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Dausset J (1958) Iso-leuko-antibodies. Acta Haematol 20:156–166

    Article  CAS  PubMed  Google Scholar 

  2. Ragoussis J, Bloemer K, Pohla H et al (1989) A physical map including a new class I gene (cda12) of the human major histocompatibility complex (A2/B13 haplotype) derived from a monosomy 6 mutant cell line. Genomics 4:301–308

    Article  CAS  PubMed  Google Scholar 

  3. Posch PE, Cruz I, Bradshaw D et al (2003) Novel polymorphisms and the definition of promoter „alleles“ of the tumor necrosis factor and lymphotoxin alpha loci: inclusion in HLA haplotypes. Genes Immun 4:547–558

    Article  CAS  PubMed  Google Scholar 

  4. Stephens HA (2001) MICA and MICB genes: Can the enigma of their polymorphism be resolved? Trends Immunol 22:378–385

    Article  CAS  PubMed  Google Scholar 

  5. Goverdhan SV, Lotery AJ, Howell WM (2005) HLA and eye disease: a synopsis. Int J Immunogenet 32:333–342

    Article  CAS  PubMed  Google Scholar 

  6. Schulze MS, Wucherpfennig KW (2012) The mechanism of HLA-DM induced peptide exchange in the MHC class II antigen presentation pathway. Curr Opin Immunol 24:105–111

    Article  CAS  PubMed  Google Scholar 

  7. Denzin LK, Fallas JL, Prendes M et al (2005) Right place, right time, right peptide: DO keeps DM focused. Immunol Rev 207:279–292

    Article  CAS  PubMed  Google Scholar 

  8. Leddon SA, Sant AJ (2010) Generation of MHC class II-peptide ligands for CD4 T-cell allorecognition of MHC class II molecules. Curr Opin Organ Transplant 15:505–511

    Article  PubMed  Google Scholar 

  9. Anonymous (1968) Nomenclature for factors of the HL-a system. Bull World Health Organ 39:483–486

    Google Scholar 

  10. Mack SJ, Hollenbach JA (2010) Allele Name Translation Tool and Update NomenCLature: software tools for the automated translation of HLA allele names between successive nomenclatures. Tissue Antigens 75:457–461

    Article  CAS  PubMed  Google Scholar 

  11. Erlich H (2012) HLA DNA typing: past, present, and future. Tissue Antigens 80:1–11

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez Vina MA, Hollenbach JA, Lyke KE et al (2012) Tracking human migrations by the analysis of the distribution of HLA alleles, lineages and haplotypes in closed and open populations. Philos Trans R Soc Lond B Biol Sci 367:820–829

    Article  Google Scholar 

  13. Nikolich-Zugich J, Slifka MK, Messaoudi I (2004) The many important facets of T-cell repertoire diversity. Nature reviews. Immunology 4:123–132

    CAS  PubMed  Google Scholar 

  14. Arstila TP, Casrouge A, Baron V et al (1999) A direct estimate of the human alphabeta T cell receptor diversity. Science 286:958–961

    Article  CAS  PubMed  Google Scholar 

  15. Lapp T, Reinhold D, Maier P et al (2012) Old immune system – new information? Importance of mononuclear phagocytes in corneal allograft rejection. Ophthalmologe 109:869–878

    Article  CAS  PubMed  Google Scholar 

  16. Spierings E, Reinhard T, Goulmy E et al (2007) Matching minor transplantation antigens in penetrating keratoplasty. Ophthalmologe 104:210–212

    Article  CAS  PubMed  Google Scholar 

  17. Bohringer D, Spierings E, Enczmann J et al (2006) Matching of the minor histocompatibility antigen HLA-A1/H-Y may improve prognosis in corneal transplantation. Transplantation 82:1037–1041

    Article  PubMed  Google Scholar 

  18. Khaireddin R, Wachtlin J, Hopfenmuller W et al (2003) HLA-A, HLA-B and HLA-DR matching reduces the rate of corneal allograft rejection. Graefes Arch Clin Exp Ophthalmol 241:1020–1028

    Article  CAS  PubMed  Google Scholar 

  19. Reinhard T, Bohringer D, Enczmann J et al (2003) HLA class I and II matching improves prognosis in penetrating normal-risk keratoplasty. Dev Ophthalmol 36:42–49

    Article  PubMed  Google Scholar 

  20. Bohringer D, Reinhard T, Duquesnoy RJ et al (2004) Beneficial effect of matching at the HLA-A and -B amino-acid triplet level on rejection-free clear graft survival in penetrating keratoplasty. Transplantation 77:417–421

    Article  PubMed  Google Scholar 

  21. Reinhard T, Bohringer D, Enczmann J et al (2004) Improvement of graft prognosis in penetrating normal-risk keratoplasty by HLA class I and II matching. Eye (Lond) 18:269–277

  22. Illing PT, Vivian JP, Dudek NL et al (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486:554–558

    CAS  PubMed  Google Scholar 

  23. Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176

    Article  CAS  PubMed  Google Scholar 

  24. Kneifel CE, Kohler AK, Altenburg A et al (2012) Epidemiology of ocular involvement in Adamantiades-Behcets disease. Ophthalmologe 109:542–547

    Article  CAS  PubMed  Google Scholar 

  25. Altenburg A, Mahr A, Maldini C et al (2012) Epidemiology and clinical aspects of Adamantiades-Behcet disease in Gemany. Current data. Ophthalmologe 109:531–541

    Article  CAS  PubMed  Google Scholar 

  26. Mizuki N, Meguro A, Ota M et al (2010) Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behcet’s disease susceptibility loci. Nat Genet 42:703–706

    Article  CAS  PubMed  Google Scholar 

  27. Rahi AH (1979) HLA and eye disease. Br J Ophthalmol 63:283–292

    Article  CAS  PubMed  Google Scholar 

  28. Ladas ID (1983) Histocompatibility (HLA) antigens and eye diseases other than uveitis. Surv Ophthalmol 27:233–244

    Article  CAS  PubMed  Google Scholar 

  29. Zakka LR, Reche P, Ahmed AR (2011) Role of MHC Class II genes in the pathogenesis of pemphigoid. Autoimmun Rev 11:40–47

    Article  CAS  PubMed  Google Scholar 

  30. Mostafa MI, Zarouk WA, El-Kamah GY (2011) Class II alleles HLA-DQB1* 0301 among a seven-membered Egyptian family of a child with oral pemphigoid. Bratisl Lek Listy 112:591–594

    CAS  PubMed  Google Scholar 

  31. Delgado JC, Turbay D, Yunis EJ et al (1996) A common major histocompatibility complex class II allele HLA-DQB1* 0301 is present in clinical variants of pemphigoid. Proc Natl Acad Sci U S A 93:8569–8571

    Article  CAS  PubMed  Google Scholar 

  32. Mondino BJ, Brown SI (1981) Ocular cicatricial pemphigoid. Ophthalmology 88:95–100

    CAS  PubMed  Google Scholar 

  33. Tohkin M, Kaniwa N, Saito Y et al (2013) A whole-genome association study of major determinants for allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Pharmacogenomics J 13(1):60–69

    Article  CAS  PubMed  Google Scholar 

  34. Loiseau P, Lepage V, Djelal F et al (2001) HLA class I and class II are both associated with the genetic predisposition to primary Sjogren syndrome. Hum Immunol 62:725–731

    Article  CAS  PubMed  Google Scholar 

  35. Fye KH, Terasaki PI, Michalski JP et al (1978) Relationshipp of HLA-Dw3 and HLA-B8 to Sjogren’s syndrome. Arthritis Rheum 21:337–342

    Article  CAS  PubMed  Google Scholar 

  36. Mann DL, Moutsopoulos HM (1983) HLA DR alloantigens in different subsets of patients with Sjogren’s syndrome and in family members. Ann Rheum Dis 42:533–536

    Article  CAS  PubMed  Google Scholar 

  37. Baratz KH, Tosakulwong N, Ryu E et al (2010) E2–2 protein and Fuchs’s corneal dystrophy. N Engl J Med 363:1016–1024

    Article  CAS  PubMed  Google Scholar 

  38. Darrell RW, Suciu-Foca N (1981) HLA DR3 in Thygeson’s superficial punctate keratitis. Tissue Antigens 18:203–204

    Article  CAS  PubMed  Google Scholar 

  39. Darrell RW (1981) Thygeson’s superficial punctate keratitis: natural history and association with HLA DR3. Trans Am Ophthalmol Soc 79:486–516

    CAS  PubMed  Google Scholar 

  40. Bohringer D, Sundmacher R, Reinhard T (2007) HLA B27 seems to promote graft failure following penetrating keratoplasties for herpetic corneal scars. Ophthalmologe 104:705–708

    Article  CAS  PubMed  Google Scholar 

  41. Jensen KB, Nissen SH, Svejgaard A et al (1984) Recurrent herpetic keratitis and HLA antigens. Acta Ophthalmol 62:61–68

    Article  CAS  Google Scholar 

  42. Ramdas WD, Van Koolwijk LM, Ikram MK et al (2010) A genome-wide association study of optic disc parameters. PLoS Genet 6:e1000978

    Article  PubMed  Google Scholar 

  43. Khor CC, Ramdas WD, Vithana EN et al (2011) Genome-wide association studies in Asians confirm the involvement of ATOH7 and TGFBR3, and further identify CARD10 as a novel locus influencing optic disc area. Hum Mol Genet 20:1864–1872

    Article  CAS  PubMed  Google Scholar 

  44. Gil-Carrasco F, Vargas-Alarcon G, Zuniga J et al (1999) HLA-DRB and HLA-DQB loci in the genetic susceptibility to develop glaucoma in Mexicans. Am J Ophthalmol 128:297–300

    Article  CAS  PubMed  Google Scholar 

  45. Takamoto M, Kaburaki T, Mabuchi A et al (2012) Common variants on chromosome 9p21 are associated with normal tension glaucoma. PloS One 7:e40107

    Article  CAS  PubMed  Google Scholar 

  46. Burdon KP, Macgregor S, Hewitt AW et al (2011) Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet 43:574–578

    Article  CAS  PubMed  Google Scholar 

  47. Zierhut M, Kotter I, Lorenz HM (2010) Problems associated with treating ocular disease in underlying inflammatory rheumatic disease. Z Rheumatol 69:393–396

    Article  CAS  PubMed  Google Scholar 

  48. Anshu A, Chee SP (2007) Posterior scleritis and its association with HLA B27 haplotype. Ophthalmologica 221:275–278

    Article  CAS  PubMed  Google Scholar 

  49. Derhaag PJ, Linssen A, Broekema N et al (1988) A familial study of the inheritance of HLA-B27-positive acute anterior uveitis. Am J Ophthalmol 105:603–606

    CAS  PubMed  Google Scholar 

  50. Derhaag PJ, De Waal LP, Linssen A et al (1988) Acute anterior uveitis and HLA-B27 subtypes. Invest Ophthalmol Vis Sci 29:1137–1140

    CAS  PubMed  Google Scholar 

  51. Rosenbaum JT (1992) Acute anterior uveitis and spondyloarthropathies. Rheum Dis Clin North Am 18:143–151

    CAS  PubMed  Google Scholar 

  52. Martin TM, Rosenbaum JT (2011) An update on the genetics of HLA B27-associated acute anterior uveitis. Ocul Immunol Inflamm 19:108–114

    Article  PubMed  Google Scholar 

  53. Ahn S, Choi HB, Kim TG (2011) HLA and disease associations in Koreans. Immune Netw 11:324–335

    Article  PubMed  Google Scholar 

  54. Baarsma GS, Priem HA, Kijlstra A (1990) Association of birdshot retinochoroidopathy and HLA-A29 antigen. Curr Eye Res 9(Suppl):63–68

    Article  PubMed  Google Scholar 

  55. Bloch-Michel E, Frau E (1991) Birdshot retinochoroidopathy and HLA-A29+ and HLA-A29-idiopathic retinal vasculitis: comparative study of 56 cases. Can J Ophthalmol 26:361–366

    CAS  PubMed  Google Scholar 

  56. Wolf MD, Folk JC, Panknen CA et al (1990) HLA-B7 and HLA-DR2 antigens and acute posterior multifocal placoid pigment epitheliopathy. Arch Ophthalmol 108:698–700

    Article  CAS  PubMed  Google Scholar 

  57. Kilmartin DJ, Finch A, Acheson RW (1997) Primary association of HLA-B51 with Behcet’s disease in Ireland. Br J Ophthalmol 81:649–653

    Article  CAS  PubMed  Google Scholar 

  58. Meguro A, Inoko H, Ota M et al (2010) Genetics of Behcet disease inside and outside the MHC. Ann Rheum Dis 69:747–754

    Article  CAS  PubMed  Google Scholar 

  59. Lapp T, Ness T, Hansen LL et al (2011) Sudden appearance and rapide progression of bilateral visual deterioration. Ophthalmologe 108:1055–1059

    Article  CAS  PubMed  Google Scholar 

  60. Zhao M, Jiang Y, Abrahams IW (1991) Association of HLA antigens with Vogt-Koyanagi-Harada syndrome in a Han Chinese population. Arch Ophthalmol 109:368–370

    Article  CAS  PubMed  Google Scholar 

  61. Weisz JM, Holland GN, Roer LN et al (1995) Association between Vogt-Koyanagi-Harada syndrome and HLA-DR1 and -DR4 in Hispanic patients living in southern California. Ophthalmology 102:1012–1015

    CAS  PubMed  Google Scholar 

  62. Islam SM, Numaga J, Fujino Y et al (1994) HLA class II genes in Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci 35:3890–3896

    CAS  PubMed  Google Scholar 

  63. Islam SM, Numaga J, Matsuki K et al (1994) Influence of HLA-DRB1 gene variation on the clinical course of Vogt-Koyanagi-Harada disease. Invest Ophthalmol Vis Sci 35:752–756

    CAS  PubMed  Google Scholar 

  64. Zamecki KJ, Jabs DA (2010) HLA typing in uveitis: use and misuse. Am J Ophthalmol 149:189–193 e182

    Article  CAS  PubMed  Google Scholar 

  65. De Kozak Y, Camelo S, Pla M (2008) Pathological aspects of spontaneous uveitis and retinopathy in HLA-A29 transgenic mice and in animal models of retinal autoimmunity: relevance to human pathologies. Ophthalmic Res 40:175–180

    Article  Google Scholar 

  66. Reynard M, Shulman IA, Azen SP et al (1983) Histocompatibility antigens in sympathetic ophthalmia. Am J Ophthalmol 95:216–221

    Article  CAS  PubMed  Google Scholar 

  67. Davis JL, Mittal KK, Freidlin V et al (1990) HLA associations and ancestry in Vogt-Koyanagi-Harada disease and sympathetic ophthalmia. Ophthalmology 97:1137–1142

    CAS  PubMed  Google Scholar 

  68. Sanghvi C, Mercieca K, Jones NP (2010) Very severe HLA B27-associated panuveitis mimicking endophthalmitis: a case series. Ocul Immunol Inflamm 18:139–141

    Article  PubMed  Google Scholar 

  69. Spaide RF, Skerry JE, Yannuzzi LA et al (1990) Lack of the HLA-DR2 specificity in multifocal choroiditis and panuveitis. Br J Ophthalmol 74:536–537

    Article  CAS  PubMed  Google Scholar 

  70. Agardh D, Gaur LK, Agardh E et al (1996) HLA-DQB1*0201/0302 is associated with severe retinopathy in patients with IDDM. Diabetologia 39:1313–1317

    Article  CAS  PubMed  Google Scholar 

  71. Mimura T, Amano S, Kato S et al (2004) HLA typing is not predictive of proliferative diabetic retinopathy in patients with younger onset type 2 diabetes mellitus. Br J Ophthalmol 88:303–305

    Article  CAS  PubMed  Google Scholar 

  72. Agardh E, Gaur LK, Lernmark A et al (2004) HLA-DRB1, -DQA1, and -DQB1 subtypes or ACE gene polymorphisms do not seem to be risk markers for severe retinopathy in younger Type 1 diabetic patients. J Diabetes Complications 18:32–36

    Article  PubMed  Google Scholar 

  73. Cipriani V, Leung HT, Plagnol V et al (2012) Genome-wide association study of age-related macular degeneration identifies associated variants in the TNXB-FKBPL-NOTCH4 region of chromosome 6p21.3. Hum Mol Genet 21:4138–4150

    Article  CAS  PubMed  Google Scholar 

  74. Arakawa S, Takahashi A, Ashikawa K et al (2011) Genome-wide association study identifies two susceptibility loci for exudative age-related macular degeneration in the Japanese population. Nat Genet 43:1001–1004

    Article  CAS  PubMed  Google Scholar 

  75. Yu Y, Bhangale TR, Fagerness J et al (2011) Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Hum Mol Genet 20:3699–3709

    Article  CAS  PubMed  Google Scholar 

  76. Chen W, Stambolian D, Edwards AO et al (2010) Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci U S A 107:7401–7406

    Article  CAS  PubMed  Google Scholar 

  77. Sobrin L, Ripke S, Yu Y et al (2012) Heritability and genome-wide association study to assess genetic differences between advanced age-related macular degeneration subtypes. Ophthalmology 119:1874–1885

    Article  PubMed  Google Scholar 

  78. Maat W, Haasnoot GW, Claas FH et al (2006) HLA Class I and II genotype in uveal melanoma: relation to occurrence and prognosis. Invest Ophthalmol Vis Sci 47:3–6

    Article  PubMed  Google Scholar 

  79. Volker-Dieben HJ, D’amaro J, De Lange P et al (1983) HLA and ABO antigens in malignant choroidal melanoma. Clin Exp Immunol 53:581–588

    CAS  PubMed  Google Scholar 

  80. Krishnakumar S, Abhyankar D, Lakshmi SA et al (2004) HLA expression in choroidal melanomas: correlation with clinicopathological features. Curr Eye Res 28:409–416

    Article  PubMed  Google Scholar 

  81. Kira J (2003) Multiple sclerosis in the Japanese population. Lancet Neurol 2:117–127

    Article  PubMed  Google Scholar 

  82. Gregersen PK, Kosoy R, Lee AT et al (2012) Risk for myasthenia gravis maps to a (151) Pro→Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann Neurol 72:927–935

    Article  CAS  PubMed  Google Scholar 

  83. Weyand CM, Hicok KC, Hunder GG et al (1992) The HLA-DRB1 locus as a genetic component in giant cell arteritis. Mapping of a disease-linked sequence motif to the antigen binding site of the HLA-DR molecule. J Clin Invest 90:2355–2361

    Article  CAS  PubMed  Google Scholar 

  84. Weyand CM, Liao YJ, Goronzy JJ (2012) The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. J Neuroophthalmol 32:259–265

    Article  PubMed  Google Scholar 

  85. Auger I, Toussirot E, Roudier J (1997) Molecular mechanisms involved in the association of HLA-DR4 and rheumatoid arthritis. Immunol Res 16:121–126

    Article  CAS  PubMed  Google Scholar 

  86. Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehungen hin: Dieses Projekt wird unterstützt von der Gertrud-Kusen-Stiftung, Hamburg, Germany, sowie von der Teresa Rosenbaum Golden Charitable Stiftung, Middlesex, United Kingdom (beides an T. Lapp).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lapp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapp, T., Reinhold, D., Böhringer, D. et al. Humanes Leukozytenantigensystem in der Augenheilkunde. Ophthalmologe 110, 849–861 (2013). https://doi.org/10.1007/s00347-013-2861-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-013-2861-7

Schlüsselwörter

Keywords

Navigation