Skip to main content
Log in

PET imaging for lymph node dissection in prostate cancer

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

The detection of neoplastic lymph nodal involvement in prostate cancer (PCa) patients has relevant therapeutic and prognostic significance, both in the clinical settings of primary staging and restaging. Lymph nodal dissection (LND) currently represents the gold standard for evaluating the presence of lymph nodal involvement. However, this procedure is invasive, associated with morbidity, and may fail in detecting all potential lymph nodal metastatic regions. Currently the criteria for lymph nodal detection using conventional imaging techniques mainly rely on morphological assessment with unsatisfactory diagnostic accuracy. Positron emission tomography (PET) represents a helpful imaging technique for a proper staging of lymph nodal status. The most investigated PET radiotracer is choline, although many others have been explored as guide for both primary and salvage LND, such as fluorodeoxyglucose, acetate, fluorocyclobutanecarboxylic acid and prostate-specific membrane antigen. In the present review, a comprehensive literature review addressing the role of PET for LND in PCa patients is reported, with the use of the above-mentioned radiotracers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sankineni S et al (2015) Lymph node staging in prostate cancer. Curr Urol Rep 16(5):30

    Article  PubMed  Google Scholar 

  2. Pond GR et al (2014) The prognostic importance of metastatic site in men with metastatic castration-resistant prostate cancer. Eur Urol 65(1):3–6

    Article  PubMed  Google Scholar 

  3. Makarov DV et al (2007) Updated nomogram to predict pathologic stage of prostate cancer given prostate-specific antigen level, clinical stage, and biopsy Gleason score (Partin tables) based on cases from 2000 to 2005. Urology 69(6):1095–1101

    Article  PubMed  PubMed Central  Google Scholar 

  4. Briganti A et al (2012) Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol 61(3):480–487

    Article  PubMed  Google Scholar 

  5. Heidenreich A et al (2014) EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent—update 2013. Eur Urol 65(1):124–137

    Article  PubMed  Google Scholar 

  6. Briganti A et al (2009) Pelvic lymph node dissection in prostate cancer. Eur Urol 55(6):1251–1265

    Article  PubMed  Google Scholar 

  7. Loeb S, Partin AW, Schaeffer EM (2010) Complications of pelvic lymphadenectomy: do the risks outweigh the benefits? Rev Urol 12(1):20–24

    PubMed  PubMed Central  Google Scholar 

  8. Barentsz JO, Thoeny HC (2015) Prostate cancer: can imaging accurately diagnose lymph node involvement? Nat Rev Urol 12(6):313–315

    Article  PubMed  Google Scholar 

  9. Joniau S et al (2013) Mapping of pelvic lymph node metastases in prostate cancer. Eur Urol 63(3):450–458

    Article  PubMed  Google Scholar 

  10. Jung JH et al (2012) Extended pelvic lymph node dissection including internal iliac packet should be performed during robot-assisted laparoscopic radical prostatectomy for high-risk prostate cancer. J Laparoendosc Adv Surg Tech A 22(8):785–790

    Article  PubMed  Google Scholar 

  11. Martorana G, Schiavina R, Franceschelli A (2009) Should we perform imaging-guided lymph node dissection in patients with lymphatic recurrence of prostate cancer after radical prostatectomy? Eur Urol 55(6):1302–1304

    Article  PubMed  Google Scholar 

  12. Abdollah F et al (2015) Contemporary role of salvage lymphadenectomy in patients with recurrence following radical prostatectomy. Eur Urol 67(5):839–849

    Article  PubMed  Google Scholar 

  13. Berkovic P et al (2013) Salvage stereotactic body radiotherapy for patients with limited prostate cancer metastases: deferring androgen deprivation therapy. Clin Genitourin Cancer 11(1):27–32

    Article  PubMed  Google Scholar 

  14. Rigatti P et al (2011) Pelvic/retroperitoneal salvage lymph node dissection for patients treated with radical prostatectomy with biochemical recurrence and nodal recurrence detected by [11C]choline positron emission tomography/computed tomography. Eur Urol 60(5):935–943

    Article  PubMed  Google Scholar 

  15. Di Muzio N et al (2012) Lymph nodal metastases: diagnosis and treatment. Q J Nucl Med Mol Imaging 56(5):421–429

    PubMed  Google Scholar 

  16. Heidenreich A et al (2016) Role of salvage lymph node dissection in prostate cancer. Curr Opin Urol 26(6):581–589

    Article  PubMed  Google Scholar 

  17. Gakis G, Stenzl A (2015) Role of 11C-choline positron emission tomography in prostate cancer recurrence—potential for delayed cure or just resetting the clock of the disease? J Urol 193(1):12–13

    Article  PubMed  Google Scholar 

  18. Picchio M et al (2015) Imaging biomarkers in prostate cancer: role of PET/CT and MRI. Eur J Nucl Med Mol Imaging 42(4):644–655

    Article  CAS  PubMed  Google Scholar 

  19. Mapelli P, Picchio M (2015) Initial prostate cancer diagnosis and disease staging—the role of choline-PET-CT. Nat Rev Urol 12(9):510–518

    Article  CAS  PubMed  Google Scholar 

  20. Jereczek-Fossa BA et al (2008) Three-dimensional conformal or stereotactic reirradiation of recurrent, metastatic or new primary tumors. Analysis of 108 patients. Strahlenther Onkol 184(1):36–40

    Article  PubMed  Google Scholar 

  21. De Bari B et al (2014) Salvage therapy of small volume prostate cancer nodal failures: a review of the literature. Crit Rev Oncol/Hematol 90(1):24–35

    Article  Google Scholar 

  22. Ploussard G et al (2015) Management of node only recurrence after primary local treatment for prostate cancer: a systematic review of the literature. J Urol 194(4):983–988

    Article  PubMed  Google Scholar 

  23. Torricelli FC et al (2015) Robotic salvage lymph node dissection after radical prostatectomy. Int Braz J Urol 41(4):819 (discussion 820)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jadvar H (2009) Molecular imaging of prostate cancer with 18F-fluorodeoxyglucose PET. Nat Rev Urol 6(6):317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beauregard JM et al (2015) FDG-PET/CT for pre-operative staging and prognostic stratification of patients with high-grade prostate cancer at biopsy. Cancer Imaging 15:2

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chang CH et al (2003) Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol Int 70(4):311–315

    Article  PubMed  Google Scholar 

  27. Bauman G et al (2012) 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis 15(1):45–55

    Article  CAS  PubMed  Google Scholar 

  28. Schiavina R, Martorana G (2013) The promise of choline-PET/CT in the detection of recurrent prostate cancer: what are the limits of our investigation? Eur Urol 63(5):797–799

    Article  PubMed  Google Scholar 

  29. Kjolhede H et al (2014) (1)(8)F-fluorocholine PET/CT compared with extended pelvic lymph node dissection in high-risk prostate cancer. World J Urol 32(4):965–970

    Article  CAS  PubMed  Google Scholar 

  30. Poulsen MH et al (2012) [18F]fluoromethylcholine (FCH) positron emission tomography/computed tomography (PET/CT) for lymph node staging of prostate cancer: a prospective study of 210 patients. BJU Int 110(11):1666–1671

    Article  CAS  PubMed  Google Scholar 

  31. Picchio M et al (2012) [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging 39(1):13–26

    Article  CAS  PubMed  Google Scholar 

  32. Vag T et al (2014) Preoperative lymph node staging in patients with primary prostate cancer: comparison and correlation of quantitative imaging parameters in diffusion-weighted imaging and 11C-choline PET/CT. Eur Radiol 24(8):1821–1826

    Article  PubMed  Google Scholar 

  33. Contractor K et al (2011) Use of [11C]choline PET-CT as a noninvasive method for detecting pelvic lymph node status from prostate cancer and relationship with choline kinase expression. Clin Cancer Res 17(24):7673–7683

    Article  CAS  PubMed  Google Scholar 

  34. Budiharto T et al (2011) Prospective evaluation of 11C-choline positron emission tomography/computed tomography and diffusion-weighted magnetic resonance imaging for the nodal staging of prostate cancer with a high risk of lymph node metastases. Eur Urol 60(1):125–130

    Article  PubMed  Google Scholar 

  35. Pinaquy JB et al (2015) Comparative effectiveness of [(18)F]-fluorocholine PET-CT and pelvic MRI with diffusion-weighted imaging for staging in patients with high-risk prostate cancer. Prostate 75(3):323–331

    Article  CAS  PubMed  Google Scholar 

  36. Van den Bergh L et al (2015) Final analysis of a prospective trial on functional imaging for nodal staging in patients with prostate cancer at high risk for lymph node involvement. Urol Oncol 33(3):109.e23–31

    PubMed  Google Scholar 

  37. Souvatzoglou M et al (2013) Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur J Nucl Med Mol Imaging 40(10):1486–1499

    Article  CAS  PubMed  Google Scholar 

  38. Piert M et al (2016) 18F-Choline PET/MRI: the additional value of PET for MRI-guided transrectal prostate biopsies. J Nucl Med 57(7):1065–1070

    Article  PubMed  Google Scholar 

  39. Piert M et al (2016) PET/MRI and prostate cancer. Clin Transl Imaging. doi:10.1007/s40336-016-0192-9

    Google Scholar 

  40. Picchio M, Ratib O (2013) PET/MRI. Clin Transl Imaging 1:3–4

    Article  Google Scholar 

  41. Ost P et al (2015) Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: a systematic review of the literature. Eur Urol 67(5):852–863

    Article  PubMed  Google Scholar 

  42. Picchio M et al (2011) The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol 59(1):51–60

    Article  PubMed  Google Scholar 

  43. Rinnab L et al (2008) [11C]Choline PET/CT for targeted salvage lymph node dissection in patients with biochemical recurrence after primary curative therapy for prostate cancer. Preliminary results of a prospective study. Urol Int 81(2):191–197

    Article  PubMed  Google Scholar 

  44. Tilki D et al (2013) 18F-Fluoroethylcholine PET/CT identifies lymph node metastasis in patients with prostate-specific antigen failure after radical prostatectomy but underestimates its extent. Eur Urol 63(5):792–796

    Article  PubMed  Google Scholar 

  45. Passoni NM et al (2014) Utility of [11C]choline PET/CT in guiding lesion-targeted salvage therapies in patients with prostate cancer recurrence localized to a single lymph node at imaging: results from a pathologically validated series. Urol Oncol 32(1):38.e9–16

    PubMed  Google Scholar 

  46. Karnes RJ et al (2015) Salvage lymph node dissection for prostate cancer nodal recurrence detected by 11C-choline positron emission tomography/computerized tomography. J Urol 193(1):111–116

    Article  PubMed  Google Scholar 

  47. Jilg CA et al (2014) Detection of lymph node metastasis in patients with nodal prostate cancer relapse using (18)F/(11)C-choline positron emission tomography/computerized tomography. J Urol 192(1):103–110

    Article  PubMed  Google Scholar 

  48. Suardi N et al (2015) Long-term outcomes of salvage lymph node dissection for clinically recurrent prostate cancer: results of a single-institution series with a minimum follow-up of 5 years. Eur Urol 67(2):299–309

    Article  PubMed  Google Scholar 

  49. Zattoni F, Guttilla A, Evangelista L (2016) Can (68)GA-PSMA or radiolabeled choline PET/CT guide salvage lymph node dissection in recurrent prostate cancer? Eur J Nucl Med Mol Imaging 43(8):1407–1409

    Article  PubMed  Google Scholar 

  50. Vavere AL et al (2008) 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med 49(2):327–334

    Article  CAS  PubMed  Google Scholar 

  51. Schumacher MC et al (2015) [11C]Acetate positron emission tomography-computed tomography imaging of prostate cancer lymph-node metastases correlated with histopathological findings after extended lymphadenectomy. Scand J Urol 49(1):35–42

    Article  CAS  PubMed  Google Scholar 

  52. Daouacher G et al (2016) Laparoscopic extended pelvic lymph node (LN) dissection as validation of the performance of [C]-acetate positron emission tomography/computer tomography in the detection of LN metastasis in intermediate- and high-risk prostate cancer. BJU Int 118(1):77–83

    Article  PubMed  Google Scholar 

  53. Schiavina R et al (2014) First case of 18F-FACBC PET/CT-guided salvage retroperitoneal lymph node dissection for disease relapse after radical prostatectomy for prostate cancer and negative 11C-choline PET/CT: new imaging techniques may expand pioneering approaches. Urol Int 92(2):242–245

    Article  PubMed  Google Scholar 

  54. Maurer T et al (2016) Diagnostic efficacy of gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol 195(5):1436–1443

    Article  PubMed  Google Scholar 

  55. Herlemann A et al (2016) Ga-PSMA positron emission tomography/computed tomography provides accurate staging of lymph node regions prior to lymph node dissection in patients with prostate cancer. Eur Urol. doi:10.1016/j.eururo.2015.12.051

    PubMed  Google Scholar 

  56. Budaus L et al (2016) Initial experience of (68)Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol 69(3):393–396

    Article  PubMed  Google Scholar 

  57. Evangelista L et al (2016) New clinical indications for (18)F/(11)C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol 70(1):161–175

    Article  PubMed  Google Scholar 

  58. Hijazi S et al (2015) Pelvic lymph node dissection for nodal oligometastatic prostate cancer detected by 68 Ga-PSMA-positron emission tomography/computerized tomography. Prostate 75(16):1934–1940

    Article  CAS  PubMed  Google Scholar 

  59. Afshar-Oromieh A et al (2014) Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41(1):11–20

    Article  CAS  PubMed  Google Scholar 

  60. Schiavina R et al (2015) (68)Ga-PSMA-PET/CT-guided salvage retroperitoneal lymph node dissection for disease relapse after radical prostatectomy for prostate cancer. Clin Genitourin Cancer 13(6):e415–e417

    Article  PubMed  Google Scholar 

  61. Heck MM et al (2014) Prospective comparison of computed tomography, diffusion-weighted magnetic resonance imaging and [11C]choline positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer patients. Eur J Nucl Med Mol Imaging 41(4):694–701

    Article  PubMed  Google Scholar 

Download references

Authors contribution

E Incerti was involved in literature search and review, content planning, manuscript writing and editing, and final approval of the version to be published. P Mapelli contributed to manuscript editing, and final approval of the version to be published. L Gianolli was involved in final approval of the version to be published. M Picchio helped in content planning, manuscript editing, and final approval of the version to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Picchio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Incerti, E., Mapelli, P., Gianolli, L. et al. PET imaging for lymph node dissection in prostate cancer. World J Urol 35, 507–515 (2017). https://doi.org/10.1007/s00345-016-1954-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-016-1954-8

Keywords

Navigation